Skip to main content
Log in

Nuclear structure in parity doublet model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using an extended parity doublet model with the hidden local symmetry, we study some properties of nuclei in the mean field approximation to see if the parity doublet model could reproduce nuclear properties and also to estimate the value of the chiral invariant nucleon mass \(m_0\) preferred by nuclear structure. We first determine our model parameters using the inputs from free space and from nuclear matter properties. Then, we study some basic nuclear properties such as the nuclear binding energy with several different choices of the chiral invariant mass. We observe that our results approach the experimental values as \(m_0\) is increased until \(m_0=700\) MeV and start to deviate more from the experiments afterwards with \(m_0\) larger than \(m_0=700\) MeV. From this observation, we conclude that \(m_0=700\) MeV is preferred by nuclear properties. We then calculate some properties of several selected nuclei with \(m_0=700\) MeV and compare them with experiments. Finally, we study the neutron-proton mass difference in some nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The relevant data to show are all shown in the main text].

References

  1. C.E. Detar, T. Kunihiro, Phys. Rev. D 39, 2805 (1989)

    Article  ADS  Google Scholar 

  2. T. Hatsuda, M. Prakash, Phys. Lett. B 224, 11 (1989)

    Article  ADS  Google Scholar 

  3. D. Zschiesche, L. Tolos, J. Schaffner-Bielich, R.D. Pisarski, Phys. Rev. C 75, 055202 (2007)

    Article  ADS  Google Scholar 

  4. V. Dexheimer, S. Schramm, D. Zschiesche, Phys. Rev. C 77, 025803 (2008)

    Article  ADS  Google Scholar 

  5. C. Sasaki, I. Mishustin, Phys. Rev. C 82, 035204 (2010)

    Article  ADS  Google Scholar 

  6. S. Gallas, F. Giacosa, G. Pagliara, Nucl. Phys. A 872, 13 (2011)

    Article  ADS  Google Scholar 

  7. C. Sasaki, H.K. Lee, W.G. Paeng, M. Rho, Phys. Rev. D 84, 034011 (2011)

    Article  ADS  Google Scholar 

  8. J. Steinheimer, S. Schramm, H. Stocker, Phys. Rev. C 84, 045208 (2011)

    Article  ADS  Google Scholar 

  9. S. Benic, I. Mishustin, C. Sasaki, Phys. Rev. D 91(12), 125034 (2015)

    Article  ADS  Google Scholar 

  10. Y. Motohiro, Y. Kim, M. Harada, Phys. Rev. C 92(2), 025201 (2015). ([Erratum: [Phys Rev C 95, (5), 059903 (2017)])

    Article  ADS  Google Scholar 

  11. M. Harada, T. Yamazaki, Charmed mesons in nuclear matter based on chiral effective models, in JPS Conf. Proc., vol. 26, pp. 024001 (2019)

  12. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  13. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rept. 409, 101 (2005)

    Article  ADS  Google Scholar 

  14. J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  15. Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics, vol. 10, edited by J. Meng (World Scientific, Singapore, 2016)

  16. N. Schunck, Energy Density Functional Methods for Atomic Nuclei (IOP Publishing Ltd, Bristol, 2019)

    Book  Google Scholar 

  17. D. Jido, M. Oka, A. Hosaka, Prog. Theor. Phys. 106, 873 (2001)

    Article  ADS  Google Scholar 

  18. S. Gallas, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 014004 (2010)

    Article  ADS  Google Scholar 

  19. W.G. Paeng, H.K. Lee, M. Rho, C. Sasaki, Phys. Rev. D 85, 054022 (2012)

    Article  ADS  Google Scholar 

  20. M. Bando, T. Kugo, K. Yamawaki, Phys. Rept. 164, 217 (1988)

    Article  ADS  Google Scholar 

  21. M. Harada, K. Yamawaki, Phys. Rept. 381, 1 (2003)

    Article  ADS  Google Scholar 

  22. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  23. X.W. Xia et al., Atom Data Nucl. Data Tabl. 121–122, 1 (2018)

    Article  ADS  Google Scholar 

  24. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  25. J. Meng, S.G. Zhou, J. Phys. G 42(9), 093101 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Jie Meng for providing the RCHB code. This work was supported in part by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science and ICT and National Research Foundation of Korea (2013M7A1A1075764), by the Institute for Basic Science (IBS-R031-D1), by National Research Foundation of Korea (NRF) grants funded by the Korean government (Ministry of Science and ICT) (No. 2021R1F1A1060066, No.2020R1A2C3006177), and by JPSP KAKENHI Grant Number 20K03927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngman Kim.

Additional information

Communicated by Dario Vretenar

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mun, MH., Shin, I.J., Paeng, WG. et al. Nuclear structure in parity doublet model. Eur. Phys. J. A 59, 149 (2023). https://doi.org/10.1140/epja/s10050-023-01064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01064-x

Navigation