Skip to main content
Log in

A unified formalism to study the pseudorapidity spectra in heavy-ion collision

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The pseudorapidity distribution of charged hadron over a wide \(\eta \) range gives us crucial information about the dynamics of particle production. The constraint by the detector acceptance, particularly at forward rapidities, demands a proper distribution function to extrapolate the pseudorapidity distribution to large \(\eta \). In this work, we have proposed a phenomenological model based on the Pearson statistical framework to study the pseudorapidity distribution. We have analyzed and fit data of charged hadrons produced in \(Pb-Pb\) collision at 2.76 TeV and \(Xe-Xe\) collision at 5.44 TeV using the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical work and the experimental data used for this analysis are already published and referenced in the main text of the paper.]

References

  1. J. Adam et al., ALICE. Phys. Lett. B 772, 567–577 (2017). arXiv:1612.08966 [nucl-ex]

    Article  ADS  Google Scholar 

  2. J.X. Sun, C.X. Tian, E.Q. Wang, F.H. Liu, Chin. Phys. Lett. 30, 022501 (2013). https://doi.org/10.1088/0256-307X/30/2/022501

    Article  ADS  Google Scholar 

  3. B.C. Li, Y.Z. Wang, F.H. Liu, X.J. Wen, Y.E. Dong, Phys. Rev. D 89(5)(2014), 054014. https://doi.org/10.1103/PhysRevD.89.054014arXiv:1403.4025 [hep-ph]

  4. G. Wolschin, EPL 95(6), 61001 (2011). https://doi.org/10.1209/0295-5075/95/61001 [arXiv:1106.3636 [hep-ph]]

    Article  ADS  Google Scholar 

  5. L.N. Gao, F.H. Liu, Adv. High Energy Phys. 2015, 184713 (2015). https://doi.org/10.1155/2015/184713 [arXiv:1509.08603 [nucl-ex]]

  6. J. Cleymans, J. Phys. G 35, 044017 (2008). https://doi.org/10.1088/0954-3899/35/4/044017

  7. F. Becattini, J. Cleymans, J. Phys. G 34, S959-964 (2007). https://doi.org/10.1088/0954-3899/34/8/S135arXiv:hep-ph/0701029 [hep-ph]

    Article  ADS  Google Scholar 

  8. L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025, (2015). https://doi.org/10.1103/PhysRevD.91.054025 [arXiv:1501.00953 [hep-ph]]

  9. Y. Gao, H. Zheng, L.L. Zhu, A. Bonasera, Eur. Phys. J. A 53(10), 197 (2017). https://doi.org/10.1140/epja/i2017-12397-yarXiv:1706.03693 [nucl-th]

    Article  Google Scholar 

  10. J. Q. Tao, M. Wang, H. Zheng, W. C. Zhang, L. L. Zhu , A. Bonasera, [arXiv:2011.05026 [nucl-th]]

  11. S. Jena, R. Gupta, Phys. Lett. B 807, 135551, (2020). https://doi.org/10.1016/j.physletb.2020.135551

  12. R. Gupta, A. Menon , S. Jena, [arXiv:2012.08124 [hep-ph]]

  13. E. Abbas et al., ALICE. Phys. Lett. B 726, 610–622 (2013). https://doi.org/10.1016/j.physletb.2013.09.022arXiv:1304.0347 [nucl-ex]

    Article  ADS  Google Scholar 

  14. J. Adam et al., ALICE. Phys. Lett. B 754, 373–385 (2016). https://doi.org/10.1016/j.physletb.2015.12.082arXiv:1509.07299 [nucl-ex].

    Article  ADS  Google Scholar 

  15. S. Acharya et al., ALICE. Phys. Lett. B 790, 35–48 (2019). https://doi.org/10.1016/j.physletb.2018.12.048arXiv:1805.04432 [nucl-ex]

    Article  ADS  Google Scholar 

  16. K. Pearson, Philosophical transactions of the royal society of London a: mathematical. Phys Eng Sci 186, 343 (1895)

    Google Scholar 

  17. J.H. Pollard, Numerical and Statistical Techniques (Cambridge University Press, Cambridge, 1979)

    MATH  Google Scholar 

  18. R. Gupta, S. Jain , S. Jena, [arXiv:2103.11185 [hep-ph]]

  19. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Statist. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Abelev et al., ALICE. Phys. Lett. B 720, 52–62 (2013). https://doi.org/10.1016/j.physletb.2013.01.051arXiv:1208.2711 [hep-ex]

    Article  ADS  Google Scholar 

  21. S. Acharya et al., ALICE. Phys. Lett. B 788, 166–179 (2019). https://doi.org/10.1016/j.physletb.2018.10.052arXiv:1805.04399 [nucl-ex]

    Article  ADS  Google Scholar 

  22. R. Brun , F. Rademakers 1997 ROOT - An Object Oriented Data Analysis Framework,Nucl. Instrum.Meth. A38981. See also ”ROOT [software], Release v6.08.06, https://doi.org/10.5281/zenodo.848819

  23. F. James, M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R. Gupta would like to acknowledge the financial support provided by CSIR through fellowship number 09/947 (0067) 2015-EMR-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Jena.

Additional information

Communicated by Tamas Biro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Katariya, A.S. & Jena, S. A unified formalism to study the pseudorapidity spectra in heavy-ion collision. Eur. Phys. J. A 57, 224 (2021). https://doi.org/10.1140/epja/s10050-021-00529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00529-1

Navigation