Skip to main content
Log in

Distribution amplitudes of light diquarks

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that soft quark+quark (diquark) correlations play an important role in the structure and interactions of hadrons constituted from three or more valence-quarks; so, it is worth developing insights into diquark structure. Using a leading-order truncation of those equations needed to solve continuum two-valence-body bound-state problems, the leading-twist two-parton distribution amplitudes (DAs) of light-quark scalar and pseudovector diquarks are calculated. The diquark DAs are narrower and taller than the asymptotic profile that characterises mesons. Consequently, the valence quasiparticles in a diquark are less likely to carry a large light-front fraction of the system’s total momentum than those in a meson. These features may both influence the form of baryon DAs and be transmitted to diquark distribution functions (DFs), in which case their impact will be felt, e.g. in the proton’s u and d valence-quark DFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are represented in this published article.]

Notes

  1. “soft” means the correlations have electromagnetic sizes typical of mesons; hence, they are not pointlike diquarks.

  2. In such contact interaction studies, \(\varLambda = \zeta \) plays a dynamical role, defining the range of interactions, and \(Z_2\rightarrow 1\).

References

  1. M.Y. Barabanov et al., Diquark correlations in Hadron physics: origin, impact and evidence. Prog. Part. Nucl. Phys. 116, 103835 (2021)

    Article  Google Scholar 

  2. C.D. Roberts, On mass and matter. AAPPS Bull. 31, 6 (2021)

    Article  Google Scholar 

  3. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016)

    Article  ADS  Google Scholar 

  4. S.-X. Qin, C.D. Roberts, Impressions of the continuum bound state problem in QCD. Chin. Phys. Lett. 37(12), 121201 (2020)

    Article  ADS  Google Scholar 

  5. P.-L. Yin, C. Chen, G. Krein, C.D. Roberts, J. Segovia, S.-S. Xu, Masses of ground-state mesons and baryons, including those with heavy quarks. Phys. Rev. D 100(3), 034008 (2019)

    Article  ADS  Google Scholar 

  6. P.-L. Yin, Z.-F. Cui, C. D. Roberts, J. Segovia, Masses of positive- and negative-parity hadron ground-states, including those with heavy quarks. arXiv:2102.12568 [hep-ph]

  7. X. Chen, F.-K. Guo, C.D. Roberts, R. Wang, Selected Science Opportunities for the EicC. Few Body Syst. 61(4), 43 (2020)

    Article  ADS  Google Scholar 

  8. H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter Equations. Phys. Rev. D 52, 4736–4740 (1995)

    Article  ADS  Google Scholar 

  9. A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem and Diquark confinement beyond rainbow—ladder approximation. Phys. Lett. B 380, 7–12 (1996)

    Article  ADS  Google Scholar 

  10. M. Oettel, M. Pichowsky, L. von Smekal, Current conservation in the covariant quark-Diquark model of the nucleon. Eur. Phys. J. A 8, 251–281 (2000)

    Article  ADS  Google Scholar 

  11. C. Chen, C.S. Fischer, C.D. Roberts, J. Segovia, Form factors of the nucleon axial current. Phys. Lett. B 815, 136150 (2021)

    Article  Google Scholar 

  12. C. Chen, C.S. Fischer, C.D. Roberts, J. Segovia, Nucleon axial-vector and pseudoscalar form factors, and PCAC relations. arXiv:2103.02054 [hep-ph]

  13. S.J. Brodsky, H.-C. Pauli, S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299–486 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.R. Hiller, Nonperturbative light-front Hamiltonian methods. Prog. Part. Nucl. Phys. 90, 75–124 (2016)

    Article  ADS  Google Scholar 

  15. P.D. Mannheim, P. Lowdon, S.J. Brodsky, Comparing light-front quantization with instant-time quantization. Phys. Rep. 891, 1–65 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Heinzl, Light cone quantization: foundations and applications. Lect. Notes Phys. 572, 55–142 (2001)

    Article  ADS  MATH  Google Scholar 

  17. C. Mezrag, J. Segovia, L. Chang, C.D. Roberts, Parton distribution amplitudes: revealing correlations within the proton and Roper. Phys. Lett. B 783, 263–267 (2018)

    Article  ADS  Google Scholar 

  18. H.L.L. Roberts, A. Bashir, L.X. Gutiérrez-Guerrero, C.D. Roberts, D.J. Wilson, \(\pi \)- and \(\rho \)-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)

    Article  ADS  Google Scholar 

  19. D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Natural constraints on the gluon-quark vertex. Phys. Rev. D 95, 031501(R) (2017)

    Article  ADS  Google Scholar 

  20. A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, Nonperturbative quark, gluon, and meson correlators of unquenched QCD. Phys. Rev. D 97, 054006 (2018)

    Article  ADS  Google Scholar 

  21. A.C. Aguilar, J.C. Cardona, M.N. Ferreira, J. Papavassiliou, Quark gap equation with non-abelian Ball-Chiu vertex. Phys. Rev. D 98, 014002 (2018)

    Article  ADS  Google Scholar 

  22. F.E. Serna, C. Chen, B. El-Bennich, Interplay of dynamical and explicit chiral symmetry breaking effects on a quark. Phys. Rev. D 99(9), 094027 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. O. Oliveira, T. Frederico, W. de Paula, The soft-gluon limit and the infrared enhancement of the quark-gluon vertex. Eur. Phys. J. C 80(5), 484 (2020)

    Article  ADS  Google Scholar 

  24. L. Chang, I.C. Cloet, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    Article  ADS  Google Scholar 

  25. H.L.L. Roberts, C.D. Roberts, A. Bashir, L.X. Gutiérrez-Guerrero, P.C. Tandy, Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)

    Article  ADS  Google Scholar 

  26. E. Ruiz Arriola, W. Broniowski, Pion light cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model. Phys. Rev. D 66, 094016 (2002)

  27. R.T. Cahill, C.D. Roberts, J. Praschifka, Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)

    Article  ADS  Google Scholar 

  28. P. Maris, Effective masses of diquarks. Few Body Syst. 32, 41–52 (2002)

    Article  ADS  Google Scholar 

  29. H.J. Munczek, A.M. Nemirovsky, The ground state \(q{\bar{q}}\) mass spectrum in QCD. Phys. Rev. D 28, 181–186 (1983)

    Article  ADS  Google Scholar 

  30. M.S. Bhagwat, A. Höll, A. Krassnigg, C.D. Roberts, P.C. Tandy, Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)

    Article  ADS  Google Scholar 

  31. V.N. Gribov, The theory of quark confinement. Eur. Phys. J. C 10, 91–105 (1999)

    Article  ADS  Google Scholar 

  32. C.D. Roberts, A.G. Williams, G. Krein, On the implications of confinement. Int. J. Mod. Phys. A 7, 5607–5624 (1992)

    Article  ADS  Google Scholar 

  33. A. Bashir et al., Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)

    Article  MATH  Google Scholar 

  34. S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Confinement contains condensates. Phys. Rev. C 85, 065202 (2012)

    Article  ADS  Google Scholar 

  35. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Investigation of rainbow-ladder truncation for excited and exotic mesons. Phys. Rev. C 85, 035202 (2012)

    Article  ADS  Google Scholar 

  36. P. Boucaud, J.P. Leroy, A. Le-Yaouanc, J. Micheli, O. Pene, J. Rodríguez-Quintero, The infrared behaviour of the pure Yang-Mills green functions. Few Body Syst. 53, 387–436 (2012)

    Article  ADS  Google Scholar 

  37. A.C. Aguilar, D. Binosi, J. Papavassiliou, The gluon mass generation mechanism: a concise primer. Front. Phys. China 11, 111203 (2016)

    ADS  Google Scholar 

  38. M.Q. Huber, Nonperturbative properties of Yang-Mills theories. Phys. Rep. 879, 1–92 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44, 083102 (2020)

    Article  ADS  Google Scholar 

  40. F. Gao, L. Chang, Y.-X. Liu, Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function. Phys. Lett. B 770, 551–555 (2017)

    Article  ADS  Google Scholar 

  41. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing strangeness: projections for kaon electromagnetic form factors. Phys. Rev. D 96(3), 034024 (2017)

    Article  ADS  Google Scholar 

  42. F.F. Mojica, C.E. Vera, E. Rojas, B. El-Bennich, Mass spectrum and decay constants of radially excited vector mesons. Phys. Rev. D 96(1), 014012 (2017)

    Article  ADS  Google Scholar 

  43. M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-dependence of pseudoscalar meson elastic form factors. Phys. Rev. D 98, 091505(R) (2018)

    Article  ADS  Google Scholar 

  44. M. Ding, K. Raya, A. Bashir, D. Binosi, L. Chang, M. Chen, C.D. Roberts, \(\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime \) transition form factors. Phys. Rev. D 99, 014014 (2019)

    Article  ADS  Google Scholar 

  45. Y.-Z. Xu et al., Elastic electromagnetic form factors of vector mesons. Phys. Rev. D 100, 114038 (2019)

    Article  ADS  Google Scholar 

  46. M. Ding, K. Raya, D. Binosi, L. Chang, C.D. Roberts, S.M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions. Phys. Rev. D 101(5), 054014 (2020)

    Article  ADS  Google Scholar 

  47. Z.-F. Cui, M. Ding, F.Gao, K. Raya, D. Binosi, L. Chang, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Higgs modulation of emergent mass as revealed in kaon and pion parton distributions. Eur. Phys. J. A (Lett.) 57(1), 5 (2021)

  48. Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Kaon and pion parton distributions. Eur. Phys. J. C 80(11), 1064 (2020)

    Article  ADS  Google Scholar 

  49. G.P. Lepage, S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett. B 87, 359–365 (1979)

    Article  ADS  Google Scholar 

  50. A.V. Efremov, A.V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 94, 245–250 (1980)

    Article  ADS  Google Scholar 

  51. G.P. Lepage, S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157–2198 (1980)

    Article  ADS  Google Scholar 

  52. P. Maris, C.D. Roberts, \(\pi \) and \(K\) meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)

    Article  ADS  Google Scholar 

  53. A. Krassnigg, Excited mesons in a Bethe-Salpeter approach. PoS Confinement 8, 075 (2008)

    Google Scholar 

  54. P. Zyla, et al., Review of particle physics, PTEP 2020 (2020) 083C01

  55. M. Ding, F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia. Phys. Lett. B 753, 330–335 (2016)

    Article  ADS  Google Scholar 

  56. B.-L. Li, L. Chang, M. Ding, C.D. Roberts, H.-S. Zong, Leading-twist distribution amplitudes of scalar- and vector-mesons. Phys. Rev. D 94, 094014 (2016)

    Article  ADS  Google Scholar 

  57. B.L. Li, L. Chang, F. Gao, C.D. Roberts, S.M. Schmidt, H.S. Zong, Distribution amplitudes of radially-excited \(\pi \) and \(K\) mesons. Phys. Rev. D 93(11), 114033 (2016)

    Article  ADS  Google Scholar 

  58. P. Maris, Electromagnetic properties of diquarks. Few Body Syst. 35, 117–127 (2004)

    ADS  Google Scholar 

  59. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Parton distribution amplitudes of light vector mesons. Phys. Rev. D 90, 014011 (2014)

    Article  ADS  Google Scholar 

  60. P. Maris, P.C. Tandy, Bethe-Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)

    Article  ADS  Google Scholar 

  61. C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the emergence of mass from studies of Pion and Kaon structure. arXiv:2102.01765 [hep-ph]

  62. R. Williams, C.S. Fischer, W. Heupel, Light mesons in QCD and unquenching effects from the 3PI effective action. Phys. Rev. D 93, 034026 (2016)

    Article  ADS  Google Scholar 

  63. D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Symmetry preserving truncations of the gap and Bethe-Salpeter equations. Phys. Rev. D 93, 096010 (2016)

    Article  ADS  Google Scholar 

  64. S.-X. Qin, C.D. Roberts, Resolving the Bethe-Salpeter kernel. arXiv:2009.13637 [hep-ph]

Download references

Acknowledgements

We are grateful for constructive comments from Z.-F. Cui, Z.-N. Xu, P.-L. Yin and J.-L. Zhang. Work supported by: Jiangsu Province Hundred Talents Plan for Professionals; National Natural Science Foundation of China (grant 11822503); and China Postdoctoral Science Foundation (grant 2019M661783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Roberts.

Additional information

Communicated by Andre Peshier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Binosi, D., Ding, M. et al. Distribution amplitudes of light diquarks. Eur. Phys. J. A 57, 115 (2021). https://doi.org/10.1140/epja/s10050-021-00427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00427-6

Navigation