Skip to main content

Advertisement

Log in

Higgs modulation of emergent mass as revealed in kaon and pion parton distributions

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Strangeness was discovered roughly seventy years ago, lodged in a particle now known as the kaon, K. Kindred to the pion, \(\pi \); both states are massless in the absence of Higgs-boson couplings. Kaons and pions are Nature’s most fundamental Nambu–Goldstone modes. Their properties are largely determined by the mechanisms responsible for emergent mass in the standard model, but modulations applied by the Higgs are crucial to Universe evolution. Despite their importance, little is known empirically about K and \(\pi \) structure. This study delivers the first parameter-free predictions for all K distribution functions (DFs) and comparisons with the analogous \(\pi \) distributions, i.e. the one-dimensional maps that reveal how the light-front momentum of these states is shared amongst the gluons and quarks from which they are formed. The results should stimulate improved analyses of existing data and motivate new experiments sensitive to all K and \(\pi \) DFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are represented in this published article.]

References

  1. G.D. Rochester, C.C. Butler, Evidence for the existence of new unstable elementary particles. Nature 160, 855–857 (1947)

    Article  ADS  Google Scholar 

  2. Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. T. Horn, C.D. Roberts, The pion: an enigma within the standard model. J. Phys. G. 43, 073001 (2016)

    Article  ADS  Google Scholar 

  5. A.C. Aguilar et al., Pion and kaon structure at the electron-ion collider. Eur. Phys. J. A 55, 190 (2019)

    Article  ADS  Google Scholar 

  6. C. D. Roberts, S. M. Schmidt, Reflections upon the Emergence of Hadronic Mass – arXiv:2006.08782 [hep-ph], Eur. Phys. J. ST (in press)

  7. J. Christenson, J. Cronin, V. Fitch, R. Turlay, Evidence for the \(2\pi \) Decay of the \(K_2^0\) Meson. Phys. Rev. Lett. 13, 138–140 (1964)

    Article  ADS  Google Scholar 

  8. S.-S. Xu, L. Chang, C.D. Roberts, H.-S. Zong, Pion and kaon valence-quark parton quasidistributions. Phys. Rev. D 97, 094014 (2018)

    Article  ADS  Google Scholar 

  9. Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44, 083102 (2020)

    Article  ADS  Google Scholar 

  10. N. Nakanishi, A General survey of the theory of the Bethe–Salpeter equation. Prog. Theor. Phys. Suppl. 43, 1–81 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. L. Chang, I.C. Cloet, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    Article  ADS  Google Scholar 

  12. C.D. Roberts, Three lectures on hadron physics. J. Phys. Conf. Ser. 706, 022003 (2016)

    Article  Google Scholar 

  13. G.P. Lepage, S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett. B 87, 359–365 (1979)

    Article  ADS  Google Scholar 

  14. A.V. Efremov, A.V. Radyushkin, Factorization and asymptotical behavior of pion form- factor in QCD. Phys. Lett. B 94, 245–250 (1980)

    Article  ADS  Google Scholar 

  15. M. Ding et al., Drawing insights from pion parton distributions. Chin. Phys. C. (Lett.) 44, 031002 (2020a)

    Article  ADS  Google Scholar 

  16. M. Ding et al., Symmetry, symmetry breaking, and pion parton distributions. Phys. Rev. D 101, 054014 (2020)

    Article  ADS  Google Scholar 

  17. S.J. Brodsky, G.P. Lepage, Exclusive processes in quantum chromodynamics. Adv. Ser. Direct. High Energy Phys. 5, 93–240 (1989)

    Article  ADS  MATH  Google Scholar 

  18. Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. (in russian), Sov. Phys. JETP 46 (1977) 641–653

  19. V. Gribov, L. Lipatov, Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  20. L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20, 94–102 (1975)

    Google Scholar 

  21. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  22. A.C. Aguilar, D. Binosi, J. Papavassiliou, The gluon mass generation mechanism: a concise primer. Front. Phys. China 11, 111203 (2016)

    ADS  Google Scholar 

  23. F. Gao, S.-X. Qin, C.D. Roberts, J. Rodríguez-Quintero, Locating the Gribov horizon. Phys. Rev. D 97, 034010 (2018)

    Article  ADS  Google Scholar 

  24. J.C. Taylor, Ward identities and charge renormalization of the Yang–Mills field. Nucl. Phys. B 33, 436–444 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.A. Slavnov, Ward Identities in Gauge theories. Theor. Math. Phys. 10, 99–107 (1972)

    Article  Google Scholar 

  26. C. Becchi, A. Rouet, R. Stora, Renormalization of Gauge theories. Ann. Phys. 98, 287–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. arXiv:0812.0580 [hep-th]

  28. D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Process-independent strong running coupling. Phys. Rev. D 96, 054026 (2017)

    Article  ADS  Google Scholar 

  29. A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD running coupling. Prog. Part. Nucl. Phys. 90, 1–74 (2016a)

    Article  ADS  Google Scholar 

  30. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)

    Article  ADS  Google Scholar 

  31. A. Deur, S.J. Brodsky, G.F. de Teramond, On the interface between perturbative and nonperturbative QCD. Phys. Lett. B 757, 275–281 (2016b)

    Article  ADS  Google Scholar 

  32. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  33. S.J. Brodsky, G.F. de Teramond, Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 96, 201601 (2006)

    Article  ADS  Google Scholar 

  34. C.-W. Hwang, Meson distribution amplitudes in holographic models. Phys. Rev. D 86, 014005 (2012)

    Article  ADS  Google Scholar 

  35. J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, H.-W. Lin, Pion distribution amplitude from lattice QCD. Phys. Rev. D 95, 094514 (2017)

    Article  ADS  Google Scholar 

  36. C. Shi, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy, H.-S. Zong, Flavour symmetry breaking in the kaon parton distribution amplitude. Phys. Lett. B 738, 512–518 (2014)

    Article  ADS  Google Scholar 

  37. J. Segovia, L. Chang, I.C. Cloet, C.D. Roberts, S.M. Schmidt et al., Distribution amplitudes of light-quark mesons from lattice QCD. Phys. Lett. B 731, 13–18 (2014)

    Article  ADS  Google Scholar 

  38. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing strangeness: projections for kaon electromagnetic form factors. Phys. Rev. D 96, 034024 (2017)

    Article  ADS  Google Scholar 

  39. P. A. Zyla, et al., Review of particle properties, Prog. Theor. Exp. Phys. 083C01

  40. A. Höll, A. Krassnigg, C.D. Roberts, Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203(R) (2004)

    Article  ADS  Google Scholar 

  41. A. Krassnigg, P. Maris, Pseudoscalar and vector mesons as \(q {\bar{q}}\) bound states. J. Phys. Conf. Ser. 9, 153–160 (2005)

    Article  ADS  Google Scholar 

  42. M.S. Bhagwat, A. Krassnigg, P. Maris, C.D. Roberts, Mind the gap. Eur. Phys. J. A 31, 630–637 (2007)

    Article  ADS  Google Scholar 

  43. M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964)

    Article  ADS  Google Scholar 

  44. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Parts 1 and 2 (CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412)

  45. J. Badier et al., Measurement of the \(K^- / \pi ^-\) structure function ratio using the Drell–Yan process. Phys. Lett. B 93, 354 (1980)

    Article  ADS  Google Scholar 

  46. S. Drell, T.-M. Yan, Massive lepton pair production in Hadron–Hadron collisions at high-energies, Phys. Rev. Lett. 25 (1970) 316–320, [Erratum: Phys. Rev. Lett. 25, 902 (1970)]

  47. H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, R. Zhang, the valence-quark distribution of the kaon from lattice QCD – arXiv:2003.14128 [hep-lat]

  48. Z.F. Ezawa, Wide-angle scattering in softened field theory. Nuovo Cim. A 23, 271–290 (1974)

    Article  ADS  Google Scholar 

  49. G.R. Farrar, D.R. Jackson, Pion and nucleon structure functions near x=1. Phys. Rev. Lett. 35, 1416 (1975)

    Article  ADS  Google Scholar 

  50. E.L. Berger, S.J. Brodsky, Quark structure functions of mesons and the Drell–Yan process. Phys. Rev. Lett. 42, 940–944 (1979)

    Article  ADS  Google Scholar 

  51. F. Yuan, Generalized parton distributions at \(x \rightarrow 1\). Phys. Rev. D 69, 051501 (2004)

    Article  ADS  Google Scholar 

  52. R.J. Holt, C.D. Roberts, Distribution functions of the nucleon and pion in the valence region. Rev. Mod. Phys. 82, 2991–3044 (2010)

    Article  ADS  Google Scholar 

  53. D. Adikaram, et al. Measurement of tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment E12-15-006

  54. J. Annand, et al. Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A

  55. O. Denisov, et al. Letter of intent (Draft 2.0): a new QCD facility at the M2 beam line of the CERN SPS – arXiv:1808.00848 [hep-ex]

  56. L.D. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz. 92, 535–536 (1953)

    MATH  Google Scholar 

  57. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)

    Article  ADS  MATH  Google Scholar 

  58. L. Chang, C. Mezrag, H. Moutarde, C.D. Roberts, J. Rodríguez-Quintero, P.C. Tandy, Basic features of the pion valence-quark distribution function. Phys. Lett. B 737, 23–29 (2014)

    Article  ADS  MATH  Google Scholar 

  59. X. Chen, F.-K. Guo, C.D. Roberts, R. Wang, Selected science opportunities for the EicC. Few Body Syst. 61(4), 43 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for constructive comments from V. Andrieux, P. Barry, W.-C. Chang, C. Chen, O. Denisov, J. Friedrich, W. Melnitchouk, C. Mezrag, W.-D. Novak, S. Platchkov, M. Quaresma and C. Quintans; and for the hospitality and support of RWTH Aachen University, III. Physikalisches Institut B, Aachen - Germany. Work supported by: National Natural Science Foundation of China (Grant No. 11805097), Jiangsu Provincial Natural Science Foundation of China (Grant No. BK20180323). Jiangsu Province Hundred Talents Plan for Professionals; Alexander von Humboldt Foundation; and Spanish Ministry of Science and Innovation (MICINN), Grant No. PID2019-107844GB-C22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Roberts.

Additional information

Communicated by David Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, ZF., Ding, M., Gao, F. et al. Higgs modulation of emergent mass as revealed in kaon and pion parton distributions . Eur. Phys. J. A 57, 5 (2021). https://doi.org/10.1140/epja/s10050-020-00318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00318-2

Navigation