Skip to main content
Log in

A method to optimize mass discrimination of particles identified in \(\Delta E\)E silicon surface barrier detector systems

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In several experiments, a system composed by two surface barrier detectors, one thin and one thicker, is used to identify the charge of a nucleus that is detected in this system. The nucleus loses part of its energy (\(\Delta E\)) in the thin detector and the remaining part (E) is left in the thick one. Since the energy loss depends on the charge, this process allows the identification of the nuclear charge. The energy loss also depends on the mass of the particle, but with a lower degree of sensitivity. Therefore, the identification of the nuclear mass is much more difficult. In this paper, we present a method to treat the data in order to optimize the mass discrimination of particles detected in \(\Delta E\)E systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data set used in this work corresponds to the spectrum shown in the figures.]

References

  1. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer, New York, 1994)

    Book  Google Scholar 

  2. J.F. Ziegler, J. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon Press, Oxford, 1985)

    Book  Google Scholar 

  3. M.M. Fowler, R.C. Jared, A gas ionization counter for particle identification. Nucl. Instrum. Methods 124, 341 (1975)

    Article  ADS  Google Scholar 

  4. P. Gässel, R.C. Jared, L.G. Moretto, Identification of atomic numbers up to Z=60 by means of \(\Delta E-E\) telescopes and a computerized method. Nucl. Instrum. Methods 142, 569 (1977)

    Article  ADS  Google Scholar 

  5. Y. Yoshida, K. Tsuji, F. Toyofuku, A. Katase, Ionization chamber telescopes for position determination and nuclear charge identification of fission fragments. Nucl. Instrum. Methods 159, 125 (1979)

    Article  ADS  Google Scholar 

  6. M.N. Rao, D.C. Biswas, R.K. Choudhury, Charge determination of fission fragments via energy loss and X-ray measurements. Nucl. Instrum. Methods Phys. Res. B 51, 102 (1990)

    Article  ADS  Google Scholar 

  7. G. Charpak, Evolution of the automatic spark chambers. Ann. Rev. Nucl. Sci. 20, 197 (1970)

    Article  ADS  Google Scholar 

  8. A.H. Walenta, J. Heintze, B. Schürlein, The multiwire drift chamber a new type of proportional wire chamber. Nucl. Instrum. Methods 92, 373 (1971)

    Article  ADS  Google Scholar 

  9. P. Håkansson, An introduction to the time-of-flight technique. Braz. J. Phys. 29, 422 (1999)

    Article  ADS  Google Scholar 

  10. D.H. Luong, M. Dasgupta, D.J. Hinde, R. du Rietz, R. Rafiei, C.J. Lin, M. Evers, A. Diaz-Torres, Predominance of transfer in triggering breakup in sub-barrier reactions of \(^{6,7}\)Li with \(^{144}\)Sm, \(^{207,208}\)Pb, and \(^{209}\)Bi. Phys. Rev. C 88, 034609 (2013)

    Article  ADS  Google Scholar 

  11. S. Kalkal et al., Asymptotic and near-target direct breakup of \(^6\)Li and \(^7\)Li. Phys. Rev. C 93, 044605 (2016)

    Article  ADS  Google Scholar 

  12. J.F. Ziegler, “SRIM-2003”, Nucl. Instrum. Methods Phys. Res. B 219, 1027 (2004)

  13. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM—The stopping range of ions in matter (SRIM Co., 2008)

  14. J.F. Ziegler, M.D. Ziegler, J.P. Biersak, SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  15. A. Schinner, P. Sigmund, Expanded PASS stopping code. Nucl. Instrum. Methods Phys. Res. B 460, 19 (2019)

    Article  ADS  Google Scholar 

  16. H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 397, 325 (1930)

    Article  Google Scholar 

  17. F. Bloch, Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Ann. Phys. 408, 285 (1933)

    Article  Google Scholar 

  18. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. Nucl. Instrum. Methods 95, 141–153 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Proc. \({\mathrm{N}}{\mathrm{o}}\) 2018/09998-8, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Proc. \({\mathrm{N}}{\mathrm{o}}\) 407096/2017-5, and it is a part of the project INCT-FNA Proc. \({\mathrm{N}}{\mathrm{o}}\) 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Scarduelli.

Additional information

Communicated by Maria Jose Garcia Borge

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarduelli, V., Gasques, L.R., Chamon, L.C. et al. A method to optimize mass discrimination of particles identified in \(\Delta E\)E silicon surface barrier detector systems. Eur. Phys. J. A 56, 24 (2020). https://doi.org/10.1140/epja/s10050-020-00021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00021-2

Navigation