Skip to main content
Log in

Detection

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

This review on second- and third-generation multidetectors devoted to heavy-ion collisions aims to cover the last twenty years. The presented list of devices is not exhaustive but regroups most of the techniques used during this period for nuclear reactions at intermediate energy (≃ 10A MeV to 1A GeV), both for charged-particle and neutron detection. The main part will be devoted to 4π multidetectors, projectile decay fragmentation, high-resolution magnetic spectrometers, auxiliary detectors and neutron detection. The last part will present the progress in electronics and detection in view of the construction of future-generation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DELF: R. Bougault, Nucl. Instrum. Methods A 259, 473 (1987)

    Article  ADS  Google Scholar 

  2. R.T. DeSouza, Nucl. Instrum. Methods A 295, 109 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  3. D.R. Bowman, Phys. Rev. Lett. 67, 1527 (1991)

    Article  ADS  Google Scholar 

  4. J. Pouthas, Nucl. Instrum. Methods A 357, 418 (1995).

    Article  ADS  Google Scholar 

  5. S. Aiello, Nucl. Phys. A 583, 561 (1995)

    Article  Google Scholar 

  6. A. Pagano, Nucl. Phys. A 681, 331c (2001)

    Article  ADS  Google Scholar 

  7. F. Gramegna, Nucl. Instrum. Methods A 389, 474 (1997)

    Article  ADS  Google Scholar 

  8. I. Iori, Nucl. Instrum. Methods A 325, 458 (1993)

    Article  ADS  Google Scholar 

  9. M. Bini, Nucl. Instrum. Methods A 515, 497 (2003).

    Article  ADS  Google Scholar 

  10. See http://cyclotron.tamu.edu/nimrod/.

  11. A. Gobbi, Nucl. Instrum. Methods A 324, 156 (1993).

    Article  ADS  Google Scholar 

  12. W. Reisdorf, Nucl. Phys. A 612, 493 (1997)

    Article  ADS  Google Scholar 

  13. E. Migneco, Nucl. Instrum. Methods A 314, 31 (1992)

    Article  ADS  Google Scholar 

  14. A. Wagner, Nucl. Instrum. Methods A 456, 290 (2000)

    Article  ADS  Google Scholar 

  15. S.P. Avdeyev, Nucl. Instrum. Methods A 332, 149 (1993).

    Article  ADS  Google Scholar 

  16. Th. Blaich, Nucl. Instrum. Methods A 314, 136 (1992).

    Article  ADS  Google Scholar 

  17. C.A. Ogilvie, Phys. Rev. Lett. 67, 1214 (1991)

    Article  ADS  Google Scholar 

  18. M. D'Agostino, Nucl. Phys. A 650, 329 (1999)

    Article  ADS  Google Scholar 

  19. F. Gimeno-Nogues, Nucl. Instrum. Methods A 399, 94 (1997)

    Article  ADS  Google Scholar 

  20. D.J. Rowland, Phys. Rev. C 67, 064602 (2003).

    Article  ADS  Google Scholar 

  21. G. Lanzano, Nucl. Instrum. Methods A 323, 694 (1992)

    Article  ADS  Google Scholar 

  22. R.E. Tribble, Nucl. Instrum. Methods A 285, 441 (1989).

    Article  ADS  Google Scholar 

  23. G.A. Souliotis, Phys. Rev. C 68, 024605 (2003)

    Article  ADS  Google Scholar 

  24. D.J. Morrissey, NSCL Staff, Nucl. Instrum. Methods B 26, 316 (1997)

    Article  Google Scholar 

  25. M. Mocko, Nucl. Phys. A 734, 532 (2004)

    Article  ADS  Google Scholar 

  26. R. Pfaff, Phys. Rev. C 51, 1348 (1995)

    Article  ADS  Google Scholar 

  27. H. Geissel, Nucl. Instrum. Methods B 70, 286 (1992).

    Article  ADS  Google Scholar 

  28. K.-H. Schmidt, Phys. Lett. B 300, 313 (1993).

    Article  ADS  Google Scholar 

  29. K.-H. Schmidt, Nucl. Phys. A 710, 157 (2002).

    Article  ADS  Google Scholar 

  30. M.V. Ricciardi, Phys. Rev. Lett. 90, 212302 (2003).

    Article  ADS  Google Scholar 

  31. P. Napolitani, Phys. Rev. C 70, 054607 (2004).

    Article  ADS  Google Scholar 

  32. A. Kelic, Phys. Rev. C 70, 064608 (2004).

    Article  ADS  Google Scholar 

  33. http://www.gsi.de/fair/index.html.

  34. http://www-land.gsi.de/r3b/index.html.

  35. H. Geissel, Nucl. Instrum. Methods B 204, 71 (2003).

    Article  ADS  Google Scholar 

  36. P.D. Zecher, Nucl. Instrum. Methods A 401, 329 (1997).

    Article  ADS  Google Scholar 

  37. Y. Périer, Nucl. Instrum. Methods A 413, 321 (1998).

    Article  Google Scholar 

  38. G. Bizard, Nucl. Phys. News 1, No. 5, 15 (1991)

    Google Scholar 

  39. H. Hamrita, Nucl. Instrum Methods A 531, 607 (2004) and PhD Thesis, University Paris VI (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Le Neindre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, R.T., Le Neindre, N., Pagano, A. et al. Detection. Eur. Phys. J. A 30, 275–291 (2006). https://doi.org/10.1140/epja/i2006-10123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10123-8

PACS.

Navigation