Skip to main content
Log in

Shape and scale dependent diffusivity of colloidal nanoclusters and aggregates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The diffusion of colloidal nanoparticles and nanomolecular aggregates, which plays an important role in various biophysical and physicochemical phenomena, is currently under intense study. Here, we examine the shape and size dependent diffusion of colloidal nano- particles, fused nanoclusters and nanoaggregates using a hybrid fluctuating lattice Boltzmann-Molecular Dynamics method. We use physically realistic parameters characteristic of an aqueous solution, with explicitly implemented microscopic no-slip and full-slip boundary conditions. Results from nanocolloids below 10 nm in radii demonstrate how the volume fraction of the hydrodynamic boundary layer influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip particles. We also characterize the shape dependent anisotropy of the diffusion coefficients of nanoclusters through the Green-Kubo relation. Finally, we study the size dependence of the diffusion of nanoaggregates comprising N ≤ 108 monomers and demonstrate that the diffusion coefficient approaches the continuum scaling limit of N −1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. You, J.H. Kim, K.H. Kim, Appl. Phys. Lett. 83, 3374 (2003)

    Article  ADS  Google Scholar 

  2. A. Meriläinen, A. Seppälä, K. Saari, J. Seitsonen, J. Ruokolainen, S. Puisto, N. Rostedt, T. Ala-Nissila, Int. J. Heat Mass Transf. 61, 439 (2013)

    Article  Google Scholar 

  3. X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  4. S.P. Jang, S.U.S. Choi, Appl. Phys. Lett. 84, 4316 (2004)

    Article  ADS  Google Scholar 

  5. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, J. Control. Release 70, 1 (2001)

    Article  Google Scholar 

  6. E.C. Cho, Q. Zhang, Y. Xia, Nat. Nanotechnol. 6, 385 (2011)

    Article  ADS  Google Scholar 

  7. N. Vogel, C.K. Weiss, K. Landfester, Soft Matter 8, 4044 (2012)

    Article  ADS  Google Scholar 

  8. M. Cerbelaud, A. Videcoq, P. Abélard, C. Pagnoux, F. Rossignol, R. Ferrando, Langmuir 24, 3001 (2008)

    Article  Google Scholar 

  9. M.A. Piechowiak, A. Videcoq, F. Rossignol, C. Pagnoux, C. Carrion, M. Cerbelaud, R. Ferrando, Langmuir 26, 12540 (2010)

    Article  Google Scholar 

  10. F. Li, D.P. Josephson, A. Stein, Angew. Chem. Int. Ed. Engl. 50, 360 (2011)

    Article  Google Scholar 

  11. L. Hong, S.M. Anthony, S. Granick, Langmuir 22, 7128 (2006)

    Article  Google Scholar 

  12. M. Hoffmann, C.S. Wagner, L. Harnau, A. Wittemann, ACS Nano 3, 3326 (2009)

    Article  Google Scholar 

  13. I. Snook, B. O’Malley, M. McPhie, P. Daivis, J. Mol. Liq. 103–104, 405 (2003)

    Article  Google Scholar 

  14. H.K. Shin, C. Kim, P. Talkner, E.K. Lee, Chem. Phys. 375, 316 (2010)

    Article  ADS  Google Scholar 

  15. Z. Li, Phys. Rev. E 80, 061204 (2009)

    Article  ADS  Google Scholar 

  16. A. Tomilov, A. Videcoq, M. Cerbelaud, M.A. Piechowiak, T. Chartier, T. Ala-Nissila, D. Bochicchio, R. Ferrando, J. Phys. Chem. B 117, 14509 (2013)

    Article  Google Scholar 

  17. Y. Zhu, S. Granick, Phys. Rev. Lett. 88, 106102 (2002)

    Article  ADS  Google Scholar 

  18. S. Richardson, J. Fluid Mech. 59, 707 (1973)

    Article  ADS  Google Scholar 

  19. C. Neto, D.R. Evans, E. Bonaccurso, H.-J. Butt, V.S.J. Craig, Reports Prog. Phys. 68, 2859 (2005)

    Article  ADS  Google Scholar 

  20. E. Lauga, M. Brenner, H. Stone, Springer Handb. Exp. Fluid Mech., 1219–1240 (2007)

  21. Y. Jiang, G.J. Blanchard, J. Phys. Chem. 98, 6436 (1994)

    Article  Google Scholar 

  22. C.E. Hay, F. Marken, G.J. Blanchard, J. Phys. Chem. A 114, 4957 (2010)

    Article  Google Scholar 

  23. J.R. Mannekutla, S.R. Inamdar, B.G. Mulimani, M.I. Savadatti, J. Fluoresc. 20, 797 (2010)

    Article  Google Scholar 

  24. G.B. Dutt, A. Sachdeva, J. Chem. Phys. 118, 8307 (2003)

    Article  ADS  Google Scholar 

  25. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA 104, 20749 (2007)

    Article  ADS  Google Scholar 

  26. U. Møller, D.G. Cooke, K. Tanaka, P.U. Jepsen, J. Opt. Soc. Am. B 26, A113 (2009)

    Article  ADS  Google Scholar 

  27. L. Duponchel, S. Laurette, B. Hatirnaz, a. Treizebre, F. Affouard, B. Bocquet, Chemom. Intell. Lab. Syst. 123, 28 (2013)

    Article  Google Scholar 

  28. U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA 103, 12301 (2006)

    Article  ADS  Google Scholar 

  29. K. Salorinne, T. Lahtinen, J. Koivisto, E. Kalenius, M. Nissinen, M. Pettersson, H. Häkkinen, Anal. Chem. 85, 3489 (2013)

    Article  Google Scholar 

  30. J. Padding, A. Louis, Phys. Rev. E 74, 031402 (2006)

    Article  ADS  Google Scholar 

  31. M. Jardat, O. Bernard, P. Turq, G.R. Kneller, J. Chem. Phys. 110, 7993 (1999)

    Article  ADS  Google Scholar 

  32. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    Article  ADS  Google Scholar 

  33. P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155 (1992)

    Article  ADS  Google Scholar 

  34. S.T.T. Ollila, C. Denniston, M. Karttunen, T. Ala-Nissila, J. Chem. Phys. 134, 064902 (2011)

    Article  ADS  Google Scholar 

  35. A. Tomilov, A. Videcoq, T. Chartier, T. Ala-Nissila, I. Vattulainen, J. Chem. Phys. 137 (2012)

  36. F. Mackay, S. Ollila, C. Denniston, Comput. Phys. Commun. 184, 2021 (2013)

    Article  ADS  Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  38. S.T.T. Ollila, C. Smith, T. Ala-Nissila, C. Denniston, Multiscale Model. Simul. 11, 213 (2013)

    Article  MathSciNet  Google Scholar 

  39. O. Punkkinen, E. Falck, I. Vattulainen, T. Ala-Nissila, J. Chem. Phys. 122, 094904 (2005)

    Article  ADS  Google Scholar 

  40. I.-C. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)

    Article  Google Scholar 

  41. V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)

    Article  ADS  Google Scholar 

  42. D.M. Heyes, M.J. Cass, J.G. Powles, W.A.B. Evans, J. Phys. Chem. B 111, 1455 (2007)

    Article  Google Scholar 

  43. B. Halle, M. Davidovic, Proc. Natl. Acad. Sci. USA 100, 12135 (2003)

    Article  ADS  Google Scholar 

  44. D.J. Evans, G.P. Morriss (Anu E Press, 2007), Chapter 6

  45. J.D. Schmit, K. Ghosh, K. Dill, Biophys. J. 100, 450 (2011)

    Article  ADS  Google Scholar 

  46. J. Garcia de la Torre, S. Navarro, M.C. Lopez Martinez, F.G. Diaz, J.J. Lopez Cascales, Biophys. J. 67, 530 (1994)

    Article  Google Scholar 

  47. J. García de la Torre, G. del Rio Echenique, A. Ortega, J. Phys. Chem. B 111, 955 (2007)

    Article  Google Scholar 

  48. J. Garcia de la Torre, Biophys. Chem. 93, 159 (2001)

    Article  Google Scholar 

  49. W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graph. 14, 33 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M.T. Alcanzare.

Electronic supplementary material

Supplementary file supplied by authors.

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcanzare, M., Ollila, S., Thakore, V. et al. Shape and scale dependent diffusivity of colloidal nanoclusters and aggregates. Eur. Phys. J. Spec. Top. 225, 729–739 (2016). https://doi.org/10.1140/epjst/e2015-50263-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50263-y

Navigation