Skip to main content
Log in

Insects have hairy eyes that reduce particle deposition

  • Regular Article
  • Applied Physics and Robotics
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An insect’s eyes may make up to 40% of its body’s surface, and are in danger of being coated by foreign particles such as dust and pollen. To protect them, several insect species possess an array of ocular hairs evenly spaced between each photoreceptor unit. Although these hairs have been observed for over 50 years, their purpose remains a mystery. In this study, we elucidate the function of ocular hairs using a combination of experiments, numerical simulation and micro-fabrication. We measure the eyes of 18 species of insects and find that the length of their ocular hairs is equal to their spacing. We conduct wind tunnel experiments using both an insect eye mimic and an at-scale fabricated micro-pillar array of the same dimensions as the insect eye. Our experiments and simulations show that ocular hairs reduce airflow at the eye surface by up to 90%. We conclude that ocular hairs act similarly to mammalian eyelashes: as insects fly, ocular hairs deflect incoming air and create a zone of stagnant air. Airflow and particle deposition are reduced dramatically, while light is only minimally occluded. Micro-scale ocular hairs may find application in the deployment of sensors outdoors, for which accumulation of airborne dust and pollen has no current solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Srinivasan, S. Zhang, Ann. Rev. Neurosci. 27, 679 (2004)

    Article  Google Scholar 

  2. L.F. Tammero, M.H. Dickinson, J. Exper. Biol. 205, 2785 (2002)

    Google Scholar 

  3. A. Sourakov, Florida Entomologist 94, 367 (2011)

    Article  Google Scholar 

  4. H. Hinton, Roy Entomol. Soc. London Symp. (1970)

  5. M.F. Land, R.D. Fernald, Ann. Rev. Neurosci. 15, 1 (1992)

    Article  Google Scholar 

  6. W.H. Miller, G.D. Bernard, J.L. Allen, Science 162, 760 (1968)

    Article  ADS  Google Scholar 

  7. V. Neese, Z. Vergleichende Physiol. 49, 543 (1965)

    Article  Google Scholar 

  8. V. Neese, Z. Vergleichende Physiol. 52, 149 (1966)

    Article  Google Scholar 

  9. H.-W. Honegger, Cell Tissue Res. 182, 281 (1977)

    Article  Google Scholar 

  10. M.M. Perry, J. Morphol. 124, 249 (1968)

    Article  Google Scholar 

  11. F.G. Barth, Curr. Opin. Neurobiol. 14, 415 (2004)

    Article  Google Scholar 

  12. J. Casas, T. Steinmann, G. Krijnen, J. Royal Soc. Interface 7, 1487 (2010)

    Article  Google Scholar 

  13. R. Fettiplace, C.M. Hackney, Nat. Rev. Neurosci. 7, 19 (2006)

    Article  Google Scholar 

  14. A. Bejan, J. Heat Transfer (Transactions ASME, Ser. C) 112, 662 (1990)

    Article  Google Scholar 

  15. A. Battisti, G. Holm, B. Fagrell, S. Larsson, Ann. Rev. Entomol. 56, 203 (2011)

    Article  Google Scholar 

  16. M.S. Mooring, W.M. Samuel, Behaviour 135, 693 (1998)

    Article  Google Scholar 

  17. D.I. Rubenstein, M. Koehl, Am. Naturalist 981 (1977)

  18. M. Lippmann, D. Yeates, R. Albert, Br. J. Ind. Med. 37, 337 (1980)

    Google Scholar 

  19. S. Vogel, J. Insect Physiol. 29, 597 (1983)

    Article  Google Scholar 

  20. C. Loudon, E.C. Davis, J. Chem. Ecol. 31, 1 (2005)

    Article  Google Scholar 

  21. K. Sato, H. Takahashi, M.-D. Nguyen, K. Matsumoto, I. Shimoyama, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 21 (2013)

  22. G.J. Amador, et al., J. Royal Soc. Interface 12, 20141294 (2015)

    Article  Google Scholar 

  23. J.B. Benoit,Aestivation (publisher Springer, 2010), p. 209

  24. G.J. Amador, D.L. Hu, J. Exper. Biol. 218(20), 3164 (2015)

    Article  Google Scholar 

  25. M. Streinzer, A. Brockmann, N. Nagaraja, J. Spaethe, PloS One 8, 57702 (2013)

    Article  ADS  Google Scholar 

  26. Diptera.info. Chrysotoxum elegans. http://www.diptera.info/forum/attachments/img-0837_1.jpg

  27. A. Karawath, User:Aka/Images/Animals. https://commons.wikimedia.org/wiki/User:Aka/Images/Animals/wiki/User:Aka/Images/Animals

  28. D. Coetzee, https://commons.wikimedia.org/wiki/File:Lucilia_sericata_on_doorknob_-_detail_of_fly.jpg/wiki/File:Lucilia_sericata_on_doorknob_-_detail_of_fly.jpg

  29. L. Howard, http://remf.dartmouth.edu/images/insectPart3SEM/

  30. Alamy, http://www.alamy.com/stock-photo-gnat-culex-pipiens-the-common-house-mosquito-top-dorsal-view-51307101.html

  31. A. Cockburn, http://www.tirpor.com/cpg_public/

  32. P. Waters, http://www.shutterstock.com/pic-77748943/stock-photo-western-honey-bee-in-flight-with-sharp-focus-on-its-head-isolated-on-white.html? src=tQhZhOTnaTzj6X4vDyIFrA-1-24/pic-77748943/stock-photo-western-honey-bee-in-flight-with-sharp-focus-on-its-head-isolated-on-white.html? src=tQhZhOTnaTzj6X4vDyIFrA-1-24

  33. Karlsson, C. Musca domestica @ 5X. https://www.flickr.com/photos/conkar/6792723054/

  34. Diptera.info. Chrysotoxum intermedium. http://www.diptera.info/forum/ attachments/ev-chrysotoxum-intermedium.jpg/forum/ attachments/ev-chrysotoxum-intermedium.jpg

  35. wiseGEEK. http://www.wisegeekhealth.com what-is-an-occipital-lymph-node. htm#very-close-view-of-mosquito-on-human-skinwhat-is-an-occipital-lymph-node. htm#very-close-view-of-mosquito-on-human-skin

  36. A.R. Parker, Z. Hegedus, R.A. Watts, Proc. Royal Soc. London. Series B: Biol. Sci. 265, 811 (1998)

    Article  Google Scholar 

  37. S.D. Carlson, C. Chi, Cell Tissue Res. 149, 21 (1974)

    Article  Google Scholar 

  38. D.G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. Royal Soc. B: Biological Sci. 273, 661 (2006)

    Article  Google Scholar 

  39. A. Oliva, A new species Oxelytrum Gistel (Coleoptera, Silphidae) from southern Argentina, with a key to the species genus. ZooKeys 1 (2012)

  40. S. Fischer, C.H. Mueller, V.B. Meyer-Rochow, Visual Neurosci. 28, 295 (2011)

    Article  Google Scholar 

  41. M.W. Szyndler, K.F. Haynes, M.F. Potter, R.M. Corn, C. Loudon, J. Royal Soc. Interface 10, 20130174 (2013)

    Article  Google Scholar 

  42. T. Bourguignon, Y. Roisin, ZooKeys, 55 (2011)

  43. S. Zonstein, Y.M. Marusik, (Araneae, Palpimanidae) ZooKeys, 27 (2013)

  44. G.S. Paulson, http://webspace.ship.edu/gspaul

  45. M. Smith, Part III – Human Eyes and Insect Eyes: A 3D modelling article. http://www.microscopy-uk.org.uk/mag/artjun10/mol%-eyes1.html/mag/artjun10/mol%-eyes1.html

  46. A. Osterrieder, http://www.plantcellbiology.com 2012 02

  47. California Department Food Agriculture Novakia miloi kerr http://www.cdfa. ca.gov/plant/ppd/Lucid/Novakia/key/Novakia/Media/Html/N_miloi.htm/plant/ppd/Lucid/Novakia/key/Novakia/Media/Html/N_miloi.htm

  48. The University Virginia Virtual Lab. http://www.virlab.virginia.edu/nanoscience_class Nanoscience_class.htm Lab/nanoscience_class Nanoscience_class.htm Lab

  49. D. Gregory, D. Marshall, http://wellcomeimages.org/indexplus/image/B0000664.html

  50. The University Texas at Dallas Department Geosciences. https://www.utdallas.edu/ pujana/sem/ant1.htm.pujana/sem/ant1.htm.

  51. Euchoo. Boliaology Part 01. http://euchoo.net/blog.bk/Boliaology-Part01

  52. Biology Department at Swarthmore College. The Robert Savage Image Award At Swarthmore College. https://savageimageaward.wordpress.com/

  53. Gans, M. http://murry-gans.blogspot.com/2012_12_01_archive.html

  54. Howard, L. Insect Part 1 SEM. http://remf.dartmouth.edu/images/insectPart1SEM/

  55. Midwood Sci. SEM. http://midwoodscience.org/sem/2012/

  56. S. Vogel, J. Exper. Biol. 44, 567 (1966)

    Google Scholar 

  57. H. Davies, C.A. Butler (Rutgers University Press, 2008)

  58. S. Succi (Oxford University Press, 2001)

  59. C.K. Aidun, J.R. Clausen, Ann. Rev. Fluid Mech. 42, 439 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. A.J.C. Ladd, R. Verberg, J. Statist. Phys. 104, 1191 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. Z.G. Mills, W. Mao, A. Alexeev, Trends BioTechnol. 31, 246 (2013)

    Article  Google Scholar 

  62. E. Gauger, H. Stark, Physical Rev. E 74 (2006)

  63. H. Jian, A.V. Vologodskii, T. Schlick, J. Comp. Phys. 136, 168 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  64. C.S. Peskin, Acta Numerica 11, 479 (2002)

    Article  MathSciNet  Google Scholar 

  65. M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)

    Article  ADS  Google Scholar 

  66. R. Ghosh, G.A. Buxton, O.B. Usta, A.C. Balazs, A. Alexeev, Langmuir 26, 2963 (2009)

    Article  Google Scholar 

  67. J. Branscomb, A. Alexeev, Soft Matter 6, 4066 (2010)

    Article  ADS  Google Scholar 

  68. C. Semmler, A. Alexeev, Phys. Rev. E 84, 066303 (2011)

  69. Z.G. Mills, B. Aziz, A. Alexeev, Soft Matter 8, 11508 (2012)

    Article  ADS  Google Scholar 

  70. H. Takahashi, N.M. Dung, K. Matsumoto, I. Shimoyama, J. Micromech. Microeng. 22, 055015 (2012)

  71. H. Takahashi, K. Matsumoto, I. Shimoyama, Measur. Sci. Technol. 24, 055304 (2013)

    Article  ADS  Google Scholar 

  72. M. Gel, I. Shimoyama, J. Micromech. Microeng. 14, 423 (2004)

    Article  ADS  Google Scholar 

  73. N. Thanh-Vinh, H. Takahashi, K. Matsumoto, I. Shimoyama, Sensors Actuators A: Physical (2014)

  74. C. Chi, S.D. Carlson, Cell Tissue Res. 166, 353 (1976)

    Article  Google Scholar 

  75. L. Sedda, et al., Proc. Royal Soc. B: Biological Sci. 279, 2354 (2012)

    Article  Google Scholar 

  76. J.H. Fewell, Behavioral Ecol. Sociobiol. 22, 401 (1988)

    Article  Google Scholar 

  77. M.W. Davidson, http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/darkfield/muscadomestica1.html

  78. M.L. Winston, The Biology of the honey bee (Harvard University Press, 1991)

  79. T. Schneider, M. Bohgard, Indoor Air 15, 215 (2005)

    Article  Google Scholar 

  80. T.L. Bergman, F.P. Incropera, A.S. Lavine, D.P. DeWitt, Fundamentals Heat and Mass Transfer (John Wiley, Sons, 2011)

  81. H. Schlichting, K. Gersten, Boundary-layer theory (Springer, 2000)

  82. H. Brinkman, Appl. Scientific Res. 1, 27 (1949)

    Article  Google Scholar 

  83. R. Larson, J. Higdon, J. Fluid Mech. 166, 449 (1986)

    Article  ADS  Google Scholar 

  84. E. Pacini, M. Hesse, Flora-Morphology, Distribution, Funct. Ecol. Plants 200, 399 (2005)

    Article  Google Scholar 

  85. L. Guglielmini, A. Kushwaha, E.S. Shaqfeh, H.A. Stone, Phys. Fluids 24, 123601 (2012)

  86. J.-H. Dirks, D. Taylor, J. Exper. Biol. 215, 1502 (2012)

    Article  Google Scholar 

  87. E. De Langre, Ann. Rev. Fluid Mech. 40, 141 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  88. J.A. Humphrey, F.G. Barth, Adv. Insect Physiol. 34, 1 (2007)

    Article  Google Scholar 

  89. H. Takahashi, T. Kan, K. Matsumoto, I. Shimoyama, IEEE Inter. Conf. Micro Electro Mech. Sys. (MEMS) (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.L. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amador, G., Durand, F., Mao, W. et al. Insects have hairy eyes that reduce particle deposition. Eur. Phys. J. Spec. Top. 224, 3361–3377 (2015). https://doi.org/10.1140/epjst/e2015-50094-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50094-x

Keywords

Navigation