Skip to main content
Log in

Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators

  • Regular Article
  • Hollow Core Resonators
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. The new informational degrees-of-freedom provided by such opto-acoustic measurements could lead to surprising new sensor applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)

    Article  ADS  Google Scholar 

  2. X. Fan, I.M. White, Nat. Photon 5, 591 (2011)

    Article  ADS  Google Scholar 

  3. A.R. Hawkins, H. Schmidt, Handbook of Optofluidics (Boca Raton: CRC Press, 2010)

  4. Y. Fainman, L. Lee, D. Psaltis, C. Yang, Optofluidics: Fundamentals, Devices, and Applications (New York: McGraw-Hill, 2010)

  5. F. Vollmer, S. Arnold, Nat. Meth. 5, 591 (2008)

    Article  Google Scholar 

  6. X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Anal. Chim. Acta 620, 8 (2008)

    Article  Google Scholar 

  7. X. Fan, Advanced Photonic Structures for Biological and Chemical Detection (New York, NY: Springer, 2009)

  8. X. Fan, S.-H. Yun, Nat. Meth. 11, 141 (2014)

    Article  Google Scholar 

  9. H. Cho, B. Lee, G.L. Liu, A. Agarwal, L.P. Lee, Lab Chip 9, 3360 (2009)

    Article  Google Scholar 

  10. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E.M. Girotto, A.G. Brolo, et al., Anal. Chem. 81, 4308 (2009)

    Article  Google Scholar 

  11. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, Appl. Phys. Lett. 80, 4057 (2002)

    Article  ADS  Google Scholar 

  12. Y. Sun, X. Fan, Anal. Bioanal. Chem. 399, 205 (2011)

    Article  Google Scholar 

  13. M.S. Luchansky, R.C. Bailey, Anal. Chem. 84, 793 (2012)

    Article  Google Scholar 

  14. I.M. White, H. Oveys, X. Fan, Opt. Lett. 31, 1319 (2006)

    Article  ADS  Google Scholar 

  15. J. G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, et al., Nat. Photon 4, 46 (2010)

    Article  ADS  Google Scholar 

  16. M. Sumetsky, Y. Dulashko, R.S. Windeler, Opt. Lett. 35, 898 (2010)

    Article  ADS  Google Scholar 

  17. W. Lee, Y. Luo, Q. Zhu, X. Fan, Opt. Express 19, 19668 (2011)

    Article  ADS  Google Scholar 

  18. A. Watkins, J. Ward, Y. Wu, S.N. Chormaic, Opt. Lett. 36, 2113 (2011)

    Article  ADS  Google Scholar 

  19. S.-X. Qian, J.B. Snow, H.-M. Tzeng, R.K. Chang, Science 231, 486 (1986)

    Article  ADS  Google Scholar 

  20. A. Kiraz, A. Sennaroglu, S. Doganay, M.A. Dundar, A. Kurt, H. Kalaycioglu, et al., Opt. Commun. 276, 145 (2007)

    Article  ADS  Google Scholar 

  21. M.R. Lee, P.M. Fauchet, Opt. Lett. 32, 3284 (2007)

    Article  ADS  Google Scholar 

  22. M. Huang, A.A. Yanik, T. Chang, H. Altug, Opt. Express 17, 24224 (2009)

    Article  ADS  Google Scholar 

  23. D. Yin, J.P. Barber, A.R. Hawkins, H. Schmidt, Appl. Phys. Lett. 87, 211111 (2005)

    Article  ADS  Google Scholar 

  24. F. Vollmer, S. Arnold, D. Keng, PNAS 105, 20701 (2008)

    Article  ADS  Google Scholar 

  25. S. Arnold, D. Keng, S.I. Shopova, S. Holler, W. Zurawsky, F. Vollmer, Opt. Express 17, 6230 (2009)

    Article  ADS  Google Scholar 

  26. Y. Pang, R. Gordon, Nano Lett. 11, 3763 (2011)

    Article  ADS  Google Scholar 

  27. S. Kuhn, P. Measor, E.J. Lunt, B.S. Phillips, D.W. Deamer, A.R. Hawkins, et al., Lab Chip 9, 2212 (2009)

    Article  Google Scholar 

  28. A.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Klug, M. Lipson, D. Erickson, Nature 457, 71 (2009)

    Article  ADS  Google Scholar 

  29. G.L. Liu, J. Kim, Y. Lu, L.P. Lee, Nature Mater. 5, 27 (2006)

    Article  ADS  Google Scholar 

  30. F.M. Weinert, D. Brauna, J. Appl. Phys. 104, 104701 (2008)

    Article  ADS  Google Scholar 

  31. J.L. Arlett, M.L. Roukes, J. Appl. Phys. 108, 084701 (2010)

    Article  ADS  Google Scholar 

  32. T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, et al., Nature 446, 1066 (2007)

    Article  ADS  Google Scholar 

  33. S. Olcum, N. Cermark, S.C. Wasserman, K.S. Christine, H. Atsumi, K.R. Payer, et al., Proc. Natl. Acad. Sci. 111, 1310 (2014)

    Article  ADS  Google Scholar 

  34. S. Son, Tzur, Y. Weng, P. Jorgensen, J. Kim, M.W. Kirschner, et al., Nat. Meth. 9, 910 (2012)

    Article  Google Scholar 

  35. F. Feijo Delgado, N. Cermark, V.C. Hecht, S. Son, Y. Li, S.M. Knudsen, et al., PLoS ONE 8, e67590 (2013)

    Article  ADS  Google Scholar 

  36. C.J. Montrose, V.A. Solovyev, T.A. Litovitz, J. Acoust. Soc. Am. 43, 117 (1968)

    Article  ADS  Google Scholar 

  37. D.A. Pinnow, S.J. Candau, J.T. LaMacchia, T.A. Litovitz, J. Acoust. Soc. Am. 43, 131 (1968)

    Article  ADS  Google Scholar 

  38. S.A. Lee, S.M. Lindsay, J.W. Powell, T. Weidlich, N.J. Tao, G.D. Lewen, et al., Biopolymers 26, 1637 (1987)

    Article  Google Scholar 

  39. W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou, Nat. Mater. 5, 830 (2006)

    Article  ADS  Google Scholar 

  40. G. Scarcelli, S.H. Yun, Nat. Photonics 2, 39 (2007)

    Article  ADS  Google Scholar 

  41. T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K.J. Vahala, Phys. Rev. Lett. 94, 223902 (2005)

    Article  ADS  Google Scholar 

  42. T.J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K.J. Vahala, Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  Google Scholar 

  43. H. Rokhsari, T. Kippenberg, T. Carmon, K.J. Vahala, Opt. Express 13 (2005)

  44. G. Bahl, K.H. Kim, W. Lee, J. Lee, X. Fan, T. Carmon, Nat. Commun. 4, 1994 (2013)

    Article  ADS  Google Scholar 

  45. K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, et al., Light Sci. Appl. 2, e110 (2013)

    Article  Google Scholar 

  46. M. Tomes, T. Carmon, Phys. Rev. Lett. 106 (2009)

  47. A.A. Savchenkov, A.B. Matsko, D. Strekalov, M. Mohageg, V.S. Ilchenko, L. Maleki, Phys. Rev. Lett. 93, 243905 (2004)

    Article  ADS  Google Scholar 

  48. G. Bahl, M. Zehnpfenning, M. Tomes, T. Carmon, Nat. Commun. 2, 403 (2011)

    Article  ADS  Google Scholar 

  49. K. Han, K. Zhu, G. Bahl, Appl. Phys. Lett. 105, 014103 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bahl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Han, K., Carmon, T. et al. Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators. Eur. Phys. J. Spec. Top. 223, 1937–1947 (2014). https://doi.org/10.1140/epjst/e2014-02237-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02237-4

Keywords

Navigation