Skip to main content
Log in

Nanosized allotropes of molybdenum disulfide

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The present review provides an overview of the rich polymorphism encountered on different length scales within the very versatile material class of transition metal chalcogenides. On the mesoscopic to nanoscopic scale such compounds exhibit a wide variety of nanostructured allotropes with varying dimensionality and competing internal structure, such as nanorods, nanostripes, nanotubes, fullerene-like particles and fullerenes. On the atomistic scale, competing local atomic arrangements within one type of allotrope determine crucially the stability, the chemical potential, and the electronic properties. Thus, any modeling of such structures cannot be restricted to purely classical or quantum-mechanical approaches, but rather the development of classical models on the basis of electronic-structure calculations is required to fully account for all relevant nano- and meso-scale effects. The main part of this review is dedicated to the stability of such nanosystems in relation with the stable size regimes, with their electronic structure, and the derived analysis of the reactivity and application potential. The calculations explain, why the nano-scale properties of the MoS2 allotropes can be quite different from the bulk ones, and predict novel effects both within and in addition to the established applications of MoS2 compounds in catalysis, tribology, electronics and electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

  • S. Iijima, Nature 354, 56 (1991)

  • R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  • P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, 1999)

  • Carbon Nanotubes: Synthesis, Structure, Properties, and Applications and Electronics, in Topics in Applied Physics, Vol. 80 (Springer, Berlin, 2001)

  • A.L. Ivanovskii, Quantum Chemistry in Materials Science: Nanotubular Forms of Matter (Ural Branch of Russian Academy of Science, Ekaterinburg, 1999)

  • Fullerenes: Chemistry, Physics, and Technology, edited by K.M. Kadish and R.S. Ruoff (Wiley-Interscience, New York, 2000)

  • R.E. Smalley, B.I. Yakobson, Solid State Commun. 107, 597 (1998)

  • K. Sattler, Carbon 33, 915 (1995)

  • H. Shioyama, T. Akita, Carbon 41, 179 (2003)

    Google Scholar 

  • J.-Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, T.J. Terminello, Phys. Rev. Lett. 90, 037401 (2003)

    Google Scholar 

  • A.N. Enyashin, A.L. Ivanovskii, Phys. Solid State 49, 392 (2007)

    Google Scholar 

  • B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Google Scholar 

  • M. Hodak, L.A. Girifalco, Phys. Rev. B 67, 075419 (2003)

    Google Scholar 

  • D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. Sugai, M. Sakata, H. Shinohara, Chem. Phys. Lett. 428, 356 (2006)

    Google Scholar 

  • V. Gupta, P. Scharff, K. Risch, H. Romanus, R. Müller, Solid State Commun. 131, 153 (2004)

    Google Scholar 

  • M.J. Bucknum, E.A. Castro, J. Chem. Theory Comput. 2, 775 (2006)

    Google Scholar 

  • A. Kuc, G. Seifert, Phys. Rev. B 74, 214104 (2006)

    Google Scholar 

  • J.M. Romo-Herrera, M. Terrones, H. Terrones, S. Dag, V. Meunier, Nano Lett. 7, 570 (2007)

    Google Scholar 

  • V.R. Coluci, D.S. Galvão, A. Jorio, Nanotechnology 17, 617 (2006)

    Google Scholar 

  • X. Rocquefelte, G.-M. Rignanese, V. Meunier, H. Terrones, M. Terrones, J.-C. Charlier, Nano Lett. 4, 805 (2004)

  • X. Lu, Z. Chen, Chem. Rev. 105, 3643 (2005)

    Google Scholar 

  • R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87, 6687 (1987)

    Google Scholar 

  • V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvão, R.H. Baughman, Phys. Rev. B 68, 035430 (2003)

    Google Scholar 

  • A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, J. Mol. Struct. (Theochem) 684, 29 (2004)

    Google Scholar 

  • E. Konstantinova, S.O. Dantas, P.M.V.B. Barone, Phys. Rev. B 74, 035417 (2006)

    Google Scholar 

  • R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444 (1992)

    Google Scholar 

  • L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nature 365, 113 (1993)

    Google Scholar 

  • R. Tenne, A.K. Zettl, Nanotubes from Inorganic Materials, in Topics in Applied Physics, Vol. 80 (Springer, Berlin, 2001), p. 81

  • V.V. Pokropivny, Powder Metallurgy and Metal Ceramics 41, 123 (2002)

    Google Scholar 

  • A.L. Ivanovskii, Russ. Chem. Rev. 71, 175 (2002)

    Google Scholar 

  • G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002)

    Google Scholar 

  • C.N.R. Rao, M. Nath, Dalton Trans. 1 (2003)

  • R. Tenne, J. Mater. Res. 21, 2726 (2006)

    Google Scholar 

  • M. Remskar, Adv. Mater. 16, 1497 (2004)

    Google Scholar 

  • H. Bergmann, B. Czeska, I. Haas, B. Mohsin, K.-H. Wandner, Gmelin Handbook of Inorganic and Organometallic Chemistry, Vol. B7 (Springer-Verlag, Berlin, 1992)

  • B.B. Zvyagin, S.V. Soboleva, Sov. Phys. Crystalogr. 12, 46 (1967)

    Google Scholar 

  • R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Phys. Rev. B 35, 303 (1987)

    Google Scholar 

  • A.L. Tan, J. Mol. Struct. (Theochem) 363, 303 (1996)

    Google Scholar 

  • T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Phys. Rev. B 64, 235305 (2001)

    Google Scholar 

  • A.J. Grant, T.M. Griffiths, G.D. Pitt, A.D. Yoffe, J. Phys. C: Solid State Phys. 8, 97 (1975)

    Google Scholar 

  • N.J. Doran, Physica B 99, 227 (1980)

    Google Scholar 

  • R. Bissessur, M.G. Kanatzidis, J.L. Schindler, C.R. Kannewurf, J. Chem. Soc. Chem. Commun. 20, 1582 (1993)

    Google Scholar 

  • P.D. Fleischauer, Thin Solid Films 154, 309 (1987)

    Google Scholar 

  • F. Wypych, R. Schöllhorn, J. Chem. Soc. Chem. Commun. 19, 1386 (1992)

    Google Scholar 

  • F. Wypych, C. Solenthaler, R. Prins, T. Weber, J. Solid State Chem. 144, 430 (1999)

    Google Scholar 

  • F. Wypych, T. Weber, R. Prins, Chem. Mater. 10, 723 (1998)

    Google Scholar 

  • D. Yang, S. Jiménez Sandoval, W.M.R. Divigalpitiya, J.C. Irwin, R.F. Frindt, Phys. Rev. B 43, 12053 (1991)

  • J. Heising, M.G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999)

    Google Scholar 

  • V. Alexiev, R. Prins, T. Weber, Phys. Chem. Chem. Phys. 2, 1815 (2000)

    Google Scholar 

  • Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5, 1644 (2003)

    Google Scholar 

  • Q. Li, E.C. Walter, W.E. van der Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, R.M. Penner, J. Phys. Chem. B 109, 3169 (2005)

    Google Scholar 

  • X. Zheng, L. Zhu, A. Yan, C. Bai, Y. Xie, Ultrason. Sonochem. 11, 83 (2004)

    Google Scholar 

  • Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang, Mater. Lett. 59, 3452 (2005)

    Google Scholar 

  • G. Seifert, T. Köhler, R. Tenne, J. Phys. Chem. B 106, 2497 (2002)

    Google Scholar 

  • J.D. Fuhr, J.O. Sofo, A. Saul, Phys. Rev. B 60, 8343 (1999)

    Google Scholar 

  • M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg, F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001)

    Google Scholar 

  • Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222 (1995)

    Google Scholar 

  • W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, J. Am. Chem. Soc. 122, 10155 (2000)

    Google Scholar 

  • L. Margulis, P. Dluzewski, Y. Feldman, R. Tenne, J. Microsc. 181, 68 (1996)

    Google Scholar 

  • R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba, Chem. Phys. Lett. 340, 242 (2001)

    Google Scholar 

  • Y. Mastai, M. Homyofner, A. Gedanken, G. Hodes, Adv. Mater. 11, 1010 (1999)

    Google Scholar 

  • M. Nath, A. Govindaraj, C.N.R. Rao, Adv. Mater. 13, 283 (2001)

    Google Scholar 

  • R. Tenne, M. Homyofner, Y. Feldman, Chem. Mater. 10, 3225 (1998)

    Google Scholar 

  • P. Santiago, J.A. Ascencio, D. Mendoza, M. Pérez-Alvarez, A. Espinosa, C. Reza-Sangermán, P. Schabes-Retchkiman, G.A. Camacho-Bragado, M. José-Yacamán, Appl. Phys. A 78, 513 (2004)

    Google Scholar 

  • I. Milošević, T. Vuković, M. Damnjanović, B. Nikolić, Eur. Phys. J. B 17, 707 (2000)

    Google Scholar 

  • E. Dobardžić, B. Dakić, M. Damnjanović, I. Milošević, Phys. Rev. B 71, 121405(R) (2005)

  • E. Dobardžić, I. Milošević, B. Dakić, M. Damnjanović, Phys. Rev. B 74, 033403 (2006)

    Google Scholar 

  • G. Seifert, T. Frauenheim, J. Kor. Phys. Soc. 37, 89 (2000)

  • G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000)

    Google Scholar 

  • M. Bar-Sadan, A.N. Enyashin, S. Gemming, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, J. Phys. Chem. B 110, 25399 (2006)

    Google Scholar 

  • V. Kralj-Iglič, M. Remškar, G. Vidmar, M. Fošnarič, A. Iglič, Phys. Lett. A 296, 151 (2002)

    Google Scholar 

  • I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, R. Tenne, J. Mater. Res. 19, 454 (2004)

    Google Scholar 

  • I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, PNAS 103, 523 (2006)

  • J. Chen, S.-L. Li, Q. Xu, K. Tanaka, Chem. Commun. 16, 1722 (2002)

    Google Scholar 

  • J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai, J. Am. Chem. Soc. 123, 11813 (2001)

    Google Scholar 

  • J. Chen, S.-L. Li, Z.L. Tao, J. Alloys Compd. 356-357, 413 (2003)

    Google Scholar 

  • M. Remškar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J.Demšhar, P. Stadelmann, F. Lévy, D. Mihailovic, Science 292, 479 (2001)

    Google Scholar 

  • M. Remškar, A. Mrzel, R. Sanjines, H. Cohen, F. Lévy, Adv. Mater. 15, 237 (2003)

    Google Scholar 

  • A. Kis, D. Mihailovic, M. Remškar, A. Mrzel, A. Jesih, I. Piwonski, A.J. Kulik, W. Benoît, L. Forr'o, Adv. Mater. 15, 733 (2003)

    Google Scholar 

  • M. Verstraete, J.-C. Charlier, Phys. Rev. B 68, 045423 (2003)

    Google Scholar 

  • I. Vilfan, Eur. Phys. J. B 51, 277 (2006)

    Google Scholar 

  • S. Gemming, G. Seifert, I. Vilfan, Phys. Stat. Sol. B 243, 3320 (2006)

    Google Scholar 

  • T. Yang, S. Okano, S. Berber, D. Tománek, Phys. Rev. Lett. 96, 125502 (2006)

    Google Scholar 

  • H. Topsøe, B.S. Clausen, F.E. Massoth, Catalysis Science and Technology, Vol. 11, edited by J.R. Anderson and M. Boudard (Springer, Berlin, 1996), p. 1

  • S. Helveg, J.V. Lauritsen, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Phys. Rev. Lett. 84, 951 (2000)

    Google Scholar 

  • J. Kibsgaard, J.V. Lauritsen, E. Lægsgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, J. Am. Chem. Soc. 128, 13950 (2006)

    Google Scholar 

  • N. Bertram, J. Cordes, Y.D. Kim, G. Ganteför, S. Gemming, G. Seifert, Chem. Phys. Lett. 418, 36 (2006)

    Google Scholar 

  • L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Catal. Lett. 64, 95 (2000)

    Google Scholar 

  • T. Zeng, X.-D. Wen, Y.-W. Li, H. Jiao, J. Phys. Chem. B 109, 13704 (2005)

    Google Scholar 

  • G. Seifert, J. Tamuliene, S. Gemming, Chem. Phys. Lett. 418, 36 (2006)

    Google Scholar 

  • J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Lægsgaard, F. Besenbacher, Nat. Nanotechnol. 2, 53 (2007)

  • S. Gemming, G. Seifert, Nat. Nanotechnol. 2, 21 (2007)

    Google Scholar 

  • M.V. Bollinger, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. B 67, 085410 (2003)

    Google Scholar 

  • P. Faye, E. Payen, D. Bougeard, J. Mol. Model. 5, 63 (1999)

    Google Scholar 

  • I.I. Zakharov, A.N. Startsev, Russ. Chem. Bull. Int. Ed. 55, 2259 (2005)

    Google Scholar 

  • H. Orita, K. Uchida, N. Itoh, J. Mol. Catal. A: Chem. 193, 197 (2003)

    Google Scholar 

  • H. Orita, K. Uchida, N. Itoh, J. Mol. Catal. A: Chem. 195, 173 (2003)

    Google Scholar 

  • X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 249, 191 (2006)

    Google Scholar 

  • A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, J. Am. Chem. Soc. 122, 11108 (2000)

    Google Scholar 

  • X.L. Li, Y.D. Li, Chem. Eur. J. 9, 2726 (2003)

    Google Scholar 

  • Y. Xiong, Y. Xie, Z. Li, X. Li, R. Zhang, Chem. Phys. Lett. 382, 182 (2003)

    Google Scholar 

  • N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, M. Naito, T. Kanki, Chem. Phys. Lett. 368, 331 (2003)

    Google Scholar 

  • D.J. Srolovitz, S.A. Safran, M. Homyonfer, R. Tenne, Phys. Rev. Lett. 74, 1779 (1995)

    Google Scholar 

  • L. Cizaire, B. Vacher, T. Le Mogne, J.M. Martin, L. Rapoport, A. Margolin, R. Tenne, Surf. Coat. Tech. 160, 282 (2002)

    Google Scholar 

  • P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, M.J. Heben, Nature 397, 114 (1999)

    Google Scholar 

  • P.A. Parilla, A.C. Dillon, B.A. Parkinson, K.M. Jones, J. Alleman, G. Riker, D.S. Ginley, M.J. Heben, J. Phys. Chem. B 108, 6197 (2004)

    Google Scholar 

  • J.A. Ascencio, M. Perez-Alvarez, L.M. Molina, P. Santiago, M. José-Yacamán, Surf. Coat. Tech. 526, 243 (2003)

    Google Scholar 

  • A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Inorg. Mater. 40, 395 (2004)

    Google Scholar 

  • A.N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, Angew. Chem. Int. Ed. 46, 623 (2007)

    Google Scholar 

  • A.N. Enyashin, A.L. Ivanovskii, Russ. J. Inorg. Chem. 49, 1531 (2004)

    Google Scholar 

  • A.N. Enyashin, A.L. Ivanovskii, Russ. J. Phys. Chem. 79, 940 (2005)

    Google Scholar 

  • M. Nath, K. Mukhopadhyay, C.N.R. Rao, Chem. Phys. Lett. 352, 163 (2002)

    Google Scholar 

  • W.K. Hsu, Y.Q. Zhu, N. Yao, S. Firth, R.J.H. Clark, H.W. Kroto, D.R.M. Walton, Adv. Funct. Mater. 11, 69 (2001)

    Google Scholar 

  • V.V. Ivanovskaya, T. Heine, S. Gemming, G. Seifert, Phys. Stat. Sol. B 243, 1757 (2006)

    Google Scholar 

  • A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, R. Tenne, J. Am. Chem. Soc. 124, 4747 (2002)

    Google Scholar 

  • X.-L. Li, Y.-D. Li, J. Phys. Chem. B 108, 13893 (2004)

    Google Scholar 

  • N. Mirabal, V. Lavayen, E. Benavente, M.A. Santa Ana, G. González, Microelectr. J. 35, 37 (2004)

    Google Scholar 

  • C. Reza-San Germán, P. Santiago, J.A. Ascencio, U. Pal, M. Pérez-Alvarez, L. Rendón, D. Mendoza, J. Phys. Chem. B 109, 17488 (2005)

  • M.N. Tahir, N. Zink, M. Eberhardt, H.A. Therese, U. Kolb, P. Theato, W. Tremel, Angew. Chem. Int. Ed. 45, 4809 (2006)

    Google Scholar 

  • M. Remškar, Z. Škraba, P. Stadelmann, F. Lévy, Adv. Mater. 12, 814 (2000)

    Google Scholar 

  • S. Hofmann, C. Ducati, J. Robertson, Adv. Mater. 14, 1821 (2002)

    Google Scholar 

  • X.C. Song, Z.D. Xu, Y.F. Zheng, G. Han, B. Liu, W.X. Chen, Chin. Chem. Lett. 15, 623 (2004)

    Google Scholar 

  • Q. Wang, J. Li, J. Phys. Chem. C 111, 1675 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A., Gemming, S. & Seifert, G. Nanosized allotropes of molybdenum disulfide. Eur. Phys. J. Spec. Top. 149, 103–125 (2007). https://doi.org/10.1140/epjst/e2007-00246-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00246-0

Keywords

Navigation