Skip to main content
Log in

From neuron to neural networks dynamics

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

This paper presents an overview of some techniques and concepts coming from dynamical system theory and used for the analysis of dynamical neural networks models. In a first section, we describe the dynamics of the neuron, starting from the Hodgkin-Huxley description, which is somehow the canonical description for the “biological neuron”. We discuss some models reducing the Hodgkin-Huxley model to a two dimensional dynamical system, keeping one of the main feature of the neuron: its excitability. We present then examples of phase diagram and bifurcation analysis for the Hodgin-Huxley equations. Finally, we end this section by a dynamical system analysis for the nervous flux propagation along the axon. We then consider neuron couplings, with a brief description of synapses, synaptic plasticity and learning, in a second section. We also briefly discuss the delicate issue of causal action from one neuron to another when complex feedback effects and non linear dynamics are involved. The third section presents the limit of weak coupling and the use of normal forms technics to handle this situation. We consider then several examples of recurrent models with different type of synaptic interactions (symmetric, cooperative, random). We introduce various techniques coming from statistical physics and dynamical systems theory. A last section is devoted to a detailed example of recurrent model where we go in deep in the analysis of the dynamics and discuss the effect of learning on the neuron dynamics. We also present recent methods allowing the analysis of the non linear effects of the neural dynamics on signal propagation and causal action. An appendix, presenting the main notions of dynamical systems theory useful for the comprehension of the chapter, has been added for the convenience of the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Abeles, Firing rates and well-timed events, in Models of Neural Networks II, edited by E. Domany, K. Schulten, J.L. van Hemmen (Springer, New York, 1994), Chap. 3

  • D. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. A 32, 1007 (1985); D. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. Lett. 55, 1530 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • L.F. Abbott, S.B. Nelson, Nat. Neurosci. 3, 1178 (2000)

    Article  Google Scholar 

  • L.F. Abbott, T.B. Kepler, Model neurons: from Hodgkin–Huxley to Hopfield, in Statistical Mechanics of Neural Networks, edited by L. Garrido (Springer, Berlin, 1990)

  • L.F. Abbott, C. van Vreeswijk, Phys. Rev. E 48, 1483 (1993)

    Article  ADS  Google Scholar 

  • E.D. Adrian, J. Physiol. (Lond.) 61, 49 (1926)

    Google Scholar 

  • E.D. Adrian, The Basis of Sensation (W.W. Norton, New York, 1928)

  • S. Amari, IEEE Trans. Syst. Man. Cyb. SMC-2, 5 (1972)

    Google Scholar 

  • S. Amari, A Method of Statistical Neurodynamics (Kybernetik, 1974)

  • S. Amari, K. Yoshida, K. Kanatani, SIAM J. Appl. Math. 33, 95 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Amit, Modelling Brain Functions: The World of Attractor Neural Networks (Cambridge University Press, Cambridge, 1989)

  • V. Arnold, Équations Différentielles Ordinaires (Éditions Mir, Moscou)

  • V. Arnold, Chapitre Supplémentaire de la Théorie des Équations Différentielles Ordinaires (Éditions Mir, Moscou)

  • V. Arnold, A. Avez, Problèmes Ergodiques de la Mécanique Classique (Gauthier-Vilars, 1967)

  • A. Babloyantz, C. Nicolis, J.M. Salazar, Phys. Lett. A 111, 152 (1985)

    Article  ADS  Google Scholar 

  • A. Babloyantz, A. Destexhe, Proc. Natl. Acad. Sci. USA 83, 3513 (1986)

    Article  ADS  Google Scholar 

  • A. Babloyantz, A. Destexhe, edited by M. Candill, C. Butler, Proc. IEEE. First Int. Conf. Neural Networks 4, 31 (1987)

    Google Scholar 

  • A. Babloyantz, A. Destexhe, edited by M. Markus, S. Muller, G. Nicolis, Springer Ser. Synerg. 39, 307 (1988)

    MathSciNet  Google Scholar 

  • P. Bak, How Nature Works: The Science of Self-organized Criticality (Springer-Verlag, 1996; Oxford University Press, 1997)

  • Ph. Blanchard, B. Cessac, T. Krüger, J. Stat. Phys. 88, 307 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Ph. Blanchard, B. Cessac, T. Krüger, J. Stat. Phys. 98, 375 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • D.H. Chialvo, P. Bak, Neuroscience 90, 1137 (1999)

    Article  Google Scholar 

  • H. Berry, M. Quoy, Structure and Dynamics of Random Recurrent Neural Networks, 2005 (submitted)

  • G.Q. Bi, M.M. Poo, J. Neurosci. 18, 10464 (1998)

    Google Scholar 

  • G. Basti, A. Perrone, IEEE I, 657 (1989)

  • M. Benaim, Dynamiques d'activation et dynamiques d'apprentissage des réseaux de neurones, Thèse de doctorat, Toulouse (1992)

  • W. Bialek, F. Rieke, R.R. de Ruyter van Stevenick, D. Warland, Science 252, 1854 (1991)

    Article  ADS  Google Scholar 

  • K. Binder, A. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  • L. Boltzmann, Lectures on Gas Theory (Dover, New York, 1995), Translation by S. Brush

  • A.J. Bray, M.A. Moore, J. Phys. C 13, L469 (1980)

  • A. Roxin, N. Brunel, D. Hansel, Phys. Rev. Lett., 2005 (in press)

  • Carr, Applications of Center Manifold Theory (Springer-Verlag, New-York; Heidelberg, Berlin, 1981)

  • See e.g. the web site http://elegans.swmed.edu/ and references therein

  • B. Cessac, B. Doyon, M. Quoy, M. Samuelides, Physica D 74, 24 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • B. Cessac, J. Phys. A 27, L927 (1994)

  • B. Cessac, Europhys. Lett. 26, 577 (1994)

    Google Scholar 

  • B. Cessac, Propriétés statistiques des dynamiques de réseaux neuromimétiques, Thèse Université Paul Sabatier, Toulouse, 1994

  • B. Cessac, J. Phys. I (France) 5, 409 (1995)

    Article  Google Scholar 

  • B. Cessac, Ph. Blanchard, T. Krüger, J.L. Meunier, J. Stat. Phys. 115, 1283 (2004)

    Article  MathSciNet  Google Scholar 

  • B. Cessac, J.A. Sepulchre, Phys. Rev. E 70, 056111 (2004)

    Article  ADS  Google Scholar 

  • B. Cessac, J.A. Sepulchre, Chaos. 16, 013104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • B. Cessac, J.A. Sepulchre, Physica D, 2007 (to appear)

  • B. Cessac, Dynamical and topological effects of hebbian learning in a simple neural network model (in preparation)

  • B. Cessac, Some remarks about a discrete time neural network model with spiking neurons: Spontaneous dynamics (in preparation)

  • B. Cessac, Some remarks about a discrete time neural network model with spiking neurons: synaptic plasticiy and thermodynamic formalism (in preparation)

  • Carpenter (1977)

  • J.P. Changeux, S. Dehaene, Cognition 33, 63 (1989)

    Article  Google Scholar 

  • N. Chernov, R. Markarian, Am. Math. Soc. (2006)

  • D.R.J. Chillingworth, Differentiable Toplogy with a View to Applications (Pitman, London, 1976)

  • M.A. Cohen, S. Grossberg, IEEE Trans. Syst., Man Cybernet. SMC-13 (1983)

  • M. Cosnard, J. Demongeot, K. Lausberg, K. Lott, Attractors, Confiners, and Fractal Dimensions: Applications in Neuromodelling (Wuerz Publishing Ltd., 1993) in Math. Appl. Biol. Med.

  • A. Crisanti, H. Sompolinsky, Phys. Rev. A 36, 4922 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Crisanti, H.J. Sommers, H. Sompolinsky, Chaos in Neural Networks: Chaotic solutions, 1990 (preprint)

  • J. Cronin, Mathematical Aspects of Hodgkin–Huxley Theory (Cambridge University Press, Cambridge, 1987)

  • O. David, K.J. Friston, NeuroImage 20, 1743 (2003)

    Article  Google Scholar 

  • E. Dauce, M. Quoy, B. Cessac, B. Doyon, M. Samuelides, Neural Netw. 11, 521 (1998)

    Article  Google Scholar 

  • E. Daucé, Adaptation dynamique et apprentissage dans des réseaux de neurones récurrents aléatoires, thèse troisième cycle (Toulouse, 2000)

  • A. Guillot, E. Daucé (Éds), Approche Dynamique de la Cognition Artificielle (Lavoisier, Paris, 2002)

  • A.M.O. De Almeida, D.J. Thouless, J. Phys. A 11, 983 (1978)

    Article  ADS  Google Scholar 

  • B. Doyon, B. Cessac, M. Quoy, M. Samuelides, Acta Biotheoretica. 42, 215 (1994)

    Article  Google Scholar 

  • S. Doi, S. Kumagai, Non linear dynamics of small scale biophysical neural networks, in Biophysical Neural Networks, edited by R.R. Poznanski (Mary Ann Liebert, Inc., Larchmont, NY, 2001), p. 261

  • Y. Dudai, The Neurobiology of Memory (Oxford University Press, Oxford, 1989)

  • B. Doyon, B. Cessac, M. Quoy, M. Samuelides, Int. J. Bifurc. Chaos 3, 279 (1993)

    Article  MATH  Google Scholar 

  • J.P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H.J. Reitboeck, Biol. Cybernet. 60, 121 (1988)

    Article  Google Scholar 

  • A. Edelman, The circular law and the probability that a random matrix has k real eigenvalues, 1 (1993)

  • A. Edwards, J. Phys. A 11, 983 (1978)

    Article  Google Scholar 

  • G.B. Ermentrout, N. Kopell, SIAM J. Math. Anal. 15, 215 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • W.J. Freeman Biol. Cyber. 56 (1987) 139-150

  • W.J. Freeman, Y. Yao, B. Burke, Neural Netw. 1, 277-288 (1988)

    Article  Google Scholar 

  • R. FitzHugh, Biophys. J. 1, 445-466 (1961)

    Google Scholar 

  • R.M. Fitzsimonds, H.J. Song, M.M. Poo, Nature 31 (1997); 388 (6641), 427-8

    Article  Google Scholar 

  • A. Bovier, V. Gayrard, J. Stat. Phys. 69, 597-627 (1993)

    Article  MathSciNet  Google Scholar 

  • D. Gallez, A. Babloyantz, Biol. Cybern. 64, 381-392 (1991)

    Article  Google Scholar 

  • J.M. Gambaudo, C. Tresser, Transition vers le chaos pour des applications continues de degré un du cercle, in Le chaos, théorie et expériences, Collection CEA (1988)

  • S. Geman, Ann. Prob. 8, 252-261 (1980)

    MATH  MathSciNet  Google Scholar 

  • The Genesis simulator, http://www.genesis-sim.org/GENESIS/genesis.html

  • W. Gerstner, W.M. Kistler, Spiking Neuron Models. Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)

  • V.L. Girko, Theor. Prob. Appl. 29, 694-706 (1984)

    Article  MathSciNet  Google Scholar 

  • J.-L. Gouzé, J. Biol. Syst. 6, 11–15 (1998)

    Article  MATH  Google Scholar 

  • C.M. Gray, W. Singer, Neurosci. Suppl. 1301P (1987)

  • C.M. Gray, P. Koenig, A.K. Engel, W. Singer, Nature 338, 334-337 (1989)

    Article  ADS  Google Scholar 

  • F. Grimbert, O. Faugeras, Neural Comput. (2006) to appear

  • J. Guckenheimer, P. Holmes, Non Linear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields (Springer-Verlag, Berlin, 1983)

  • J. Guckenheimer, I.S. Labouriau, Bull. Math. Biol. 55, 937-952 (1993)

    MATH  Google Scholar 

  • J. Guckenheimer, O. Ricardo, SIAM J. Appl. Dyn. Syst. 1, 105-114 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • J. Guckenheimer, P. Worfolk, Dynamical systems: Some computational problems, NATO ASI, Bifurcations and Periodic Orbits of Vector Fields, Conference Proceedings and http://arxiv.org/abs/chao-dyn/9304010' (1993)

  • B. Hassard, J. Theoret. Biol. 71, 401-420 (1978)

    Article  MathSciNet  Google Scholar 

  • D.O. Hebb, The Organization of Behaviour (John Wiley & Sons, New York, 1949)

  • B. Hille, Ionic Channels of Excitable Membranes, 2nd edn. (Sinauer Associates, Sunderland, Mass, 1992)

  • L.J. Graham, The Surf-Hippo Neuron Simulation System, http://www.neurophys.biomedicale.univ-paris5.fr/~graham/surf-hippo-files/Surf-Hippo.README.html

  • M.W. Hirsch Neural Networks 2, 331-349 (1989)

  • A.L. Hodgkin, A.F. Huxley, J. Physiol. (Lond.) 116, 449-472 (1952)

    Google Scholar 

  • A.L. Hodgkin, A.F. Huxley, J. Physiol. (Lond.) 117, 500-544 (1952)

    Google Scholar 

  • J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554-2558 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • J.J. Hopfield, Nature 376, 33-36 (1995)

    Article  ADS  Google Scholar 

  • J.J. Hopfield, Tank, Biol. Cybern. 52, 141-152 (1985)

    MATH  MathSciNet  Google Scholar 

  • F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks (Springer-Verlag, New York, 1997)

  • G. Iooss, A. Chenciner, ARMA 69, 109-198 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • E.M. Izhikevich, Bifurcations in brain dynamics, Ph.D. thesis, Department of Mathematics, Michigan State University (1996)

  • J.J. Jack, D. Noble, R.W. Tsien, Electric current flow in excitable cells (Clarendon Press, Oxford 1975)

  • B.H. Jansen, G. Rit, Biol. Cybern. 73, 357-366 (1995)

    MATH  Google Scholar 

  • A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Kluwer, 1998)

  • J. Keener, J. Sneyd, Mathematical Physiology, volume 8 of Interdisciplinary Applied Mathematics (Springer, New York, 1998)

  • T.B. Kepler, L.F. Abbott, E. Marder, Biol. Cybern. 66, 381-387 (1992)

    Article  MATH  Google Scholar 

  • S.R. Kelso, A.H. Ganong, T.H. Brown, Proc. Natl. Acad. Sci. USA 83, 5326-5330 (1986)

    Article  ADS  Google Scholar 

  • C. Koch, Biophysics of Computation (Oxford University Press, New York, 1999)

  • C. Koch, O. Bernander, R.J. Douglas, J. Comput. Neurosci. 2, 63-82 (1995)

    Article  MATH  Google Scholar 

  • J.P. Lasalle, J. Diff. Eq. 4, 57-65 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • I.S. Labouriau, SIAM J., Math. Anal. 20, 1-12 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • F.H. Lopes da Silva, A. van Rotterdam, P Barts, E. van Heusden, W. Burr, Model of neuronal populations, the basic mechanism of rhythmicity, in Progress in brain research, edited by M.A. Corner, D.F. Swaab (Elsevier, Amsterdam) 45, 281-308 (1976)

    Google Scholar 

  • W.S. Mac Cullogh, W. Pitts, Bull. Math. Biophys. 5, 115-133 (1943)

    Article  MathSciNet  Google Scholar 

  • R.S. MacKay, C. Tresser, Physica D 19, 206-237 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • C.M. Marcus, R.M. Westrevelt, Phys. Rev. A 40, 501-504 (1989)

    Article  ADS  Google Scholar 

  • J.E. Marsden, M. Mac Craken, in The Hopf Bifurcation and Its Applications (Springer-Verlag, New York; Heidelberg, Berlin, 1976)

  • M.V. Mascagni, A.S. Sherman, Numerical methods for neuronal modeling, in edited by Methods in Neuronal Modeling Christof Koch Idan Segev (MIT Press, Cambridge, MA, 1998)

  • M. Mézard, G. Parisi, M.A. Virasoro, Spin-glass Theory and Beyond (Singapore World Scientific, 1987)

  • J. Milnor, Com. Math. Phys. 99, 177 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • L. Molgedey, J. Schuchardt, H.G. Schuster, Phys. Rev. Let. 69, 3717-3719 (1992)

    Article  ADS  Google Scholar 

  • C. Morris, H. Lecar, Biophys. J. 35, 193-213 (1981)

    Google Scholar 

  • E.F. Mishchenko, N.Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Translated from Russian by F.M.C. Goodspeed (Plenum, New York, 1980)

  • J.S. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061-2070 (1962)

    Article  Google Scholar 

  • M. Nelson, Rinzel, J. The Hodgkin-Huxley model, in The Book of Genesis, edited by J.M. Bower, Beeman, Chap. 4 (Springer, New York, 1995), pp. 27-51

  • G. Parisi, J. Phys. A. 19, L675-680 (1988)

    Google Scholar 

  • H. Poincaré, Oeuvres complètes, Jacques Gabay

  • M.W. Oram, M.C. Wiener, R. Lestienne, B.J. Richmond, J. Neurophysiol. 81, 3021-3033 (1999)

    Google Scholar 

  • M. Pollicott, Invent. Math. 81, 413-426 (1985); D. Ruelle, J. Diff. Geom. 25, 99-116 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes – Exploring the Neural Code (MIT Press, Cambridge, MA, 1996)

  • J. Rinzel, Excitation dynamics: insights from simplified membrane models. Federation Proc. 44, 2944-2946 (1985)

    Google Scholar 

  • J. Rinzel, G.B. Ermentrout, Analysis of neuronal excitability and oscillations, Methods in Neuronal Modeling, edited by C. Koch, I. Segev (MIT Press, Cambridge, MA, 1989)

  • J. Rinzel, R. Miller, Math. Biosci. 49, 22-59 (1980)

    Article  MathSciNet  Google Scholar 

  • D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press, 1989)

  • D. Ruelle, F. Takens, Commun. Math. Phys. 20, 167-192 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • D. Ruelle, J. Stat. Phys. 95, 393-468 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Samuelides, B. Doyon, B. Cessac, M. Quoy, Math. of Neural Networks, 312-317 (1996)

  • O. Moynot, M. Samuelides, Probab. Theory Relat. Fields 123, 41-75 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Quoy, Apprentissage dans les réseaux neuromimétiques à dynamique de base chaotique, Thèse ENSAE, Toulouse, 1994

  • M. Quoy, B. Doyon, M. Samuelides, Hebbian Learning in Discrete Time Chaotic Neural Networks (WCNN, Washington DC, 1995)

  • M. Quoy, E. Daucé, Visual and motor learning using a chaotic recurrent neural network: application to the control of a mobile robot, in Neural Computation (Berlin, 2000)

  • E. Daucé, M. Quoy, Random Recurrent Neural Networks for Autonomous System Design (SAB Paris, France, 2000)

  • E. Daucé, M. Quoy, B. Doyon, Biol. Cybern. 87, 185-198 (2002)

    Article  MATH  Google Scholar 

  • C.A. Skarda, W.J. Freeman, Behav. Brain Sci. 10, 161-195 (1987)

    Google Scholar 

  • M.N. Shadlen, W.T. Newsome, Curr. Opin. Neurobiol. 4, 569-579 (1994)

    Article  Google Scholar 

  • D. Sherrington, An introduction and overview is given of the theory of spin glasses and its application, cond-mat/9806289 (1998)

  • C. Soulé, ComPlexUs, 1, 123-133 (2003)

  • Ya.G. Sinai, Russ. Math. Surveys, 27, 21-69 (1972); D. Ruelle, Thermodynamic formalism (Addison-Wesley Reading, Massachusetts, 1978); R. Bowen, Lect. Notes. Math. 470 (Springer-Verlag, Berlin, 1975)

  • D. Sherrington, S. Kirkpatrick, Phys. Rev. Let. 35, 1792 (1975)

    Article  ADS  Google Scholar 

  • S. Smale J. Math. Biol. 3, 5-7 (1976)

    Google Scholar 

  • H.L. Smith, SIAM Rev. 30, 87-113 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • W.R. Softky, Curr. Opin. Neurobiol. 5, 239-247 (1995)

    Article  Google Scholar 

  • H. Sompolinsky, A. Crisanti, H.J. Sommers, Phys. Rev. Lett. 61, 259-262 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Thomas, On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, in Numerical Methods in the Study of Critical Phenomena, of Springer-Verlag in Synergetics 9, 180-193 (1981)

    Google Scholar 

  • D.J. Thouless, P.W. Anderson, R.J. Palmer, Philos. Mag. 35, 593-601 (1977)

    Google Scholar 

  • S. Thorpe, D. Fize, C. Marlot, Nature 381, 520-522 (1996)

    Article  ADS  Google Scholar 

  • M. Viana, Stochastic dynamics of deterministic systems

  • G. Boffeta, G. Lacorata, S. Musacchio, A. Vulpiani, Chaos, 13, 806 (2003) and references therein

  • R.F. Williams, Publ. Math. IHES 43, 169 (1974)

    Google Scholar 

  • M. Yoshioka, Chaos synchronization in gap-junction-coupled neurons, ArXiv nlin.CD/0505054 (2005)

  • M. Samuelides, B. Cessac, Eur. Phys. J. Special Topics 142, 89-122 (2007)

    Google Scholar 

  • L. Perrinet, Eur. Phys. J. Special Topics 142, 163-225 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cessac, B., Samuelides, M. From neuron to neural networks dynamics. Eur. Phys. J. Spec. Top. 142, 7–88 (2007). https://doi.org/10.1140/epjst/e2007-00058-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00058-2

Keywords

Navigation