Skip to main content
Log in

Transverse spin structure of the nucleon through target single-spin asymmetry in semi-inclusive deep-inelastic (e, e’\( \pi^{\pm}_{}\)) reaction at Jefferson Lab

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to perform precision studies of the transverse spin and transverse-momentum-dependent structure in the valence quark region for both the proton and the neutron. In this paper, we focus our discussion on a recently approved experiment on the neutron as an example of the precision studies planned at JLab. The new experiment will perform precision measurements of target Single-Spin Asymmetries (SSA) from semi-inclusive electro-production of charged pions from a 40 cm long transversely polarized 3He target in deep-inelastic-scattering kinematics using 11 and 8.8 GeV electron beams. This new coincidence experiment in Hall A will employ a newly proposed solenoid spectrometer (SoLID). The large acceptance spectrometer and the high polarized luminosity will provide precise 4D (x , z , PT and Q2) data on the Collins, Sivers, and pretzelosity asymmetries for the neutron through the azimuthal angular dependence. The full 2\( \pi\) azimuthal angular coverage in the lab is essential in controlling the systematic uncertainties. The results from this experiment, when combined with the proton Collins asymmetry measurement and the Collins fragmentation function determined from the e+e- collision data, will allow for a quark flavor separation in order to achieve a determination of the tensor charge of the d quark to a 10% accuracy. The extracted Sivers and pretzelosity asymmetries will provide important information to understand the correlations between the quark orbital angular momentum and the nucleon spin and between the quark spin and nucleon spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Muon, J. Ashman , Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  2. B.W. Filippone, X.-D. Ji, Adv. Nucl. Phys. 26, 1 (2001)

    Article  Google Scholar 

  3. S.E. Kuhn, J.P. Chen, E.Leader, Prog. Part. Nucl. Phys. 63, 1 (2009)

    Article  ADS  Google Scholar 

  4. X. Artru, M. Mekhfi, Z. Phys. C 45, 669 (1990)

    Article  ADS  Google Scholar 

  5. P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996)

    Article  ADS  Google Scholar 

  6. D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998)

    Article  ADS  Google Scholar 

  7. X.-d. Ji, J.-P. Ma, F. Yuan, Phys. Lett. B 597, 299 (2004)

    Article  ADS  Google Scholar 

  8. K. Hidaka, E. Monsay, D.W. Sivers, Phys. Rev. D 19, 1503 (1979)

    Article  ADS  Google Scholar 

  9. J.P. Ralston, D.E. Soper, Nucl. Phys. B 152, 109 (1979)

    Article  ADS  Google Scholar 

  10. R.L. Jaffe, X.-D. Ji, Phys. Rev. Lett. 67, 552 (1991)

    Article  ADS  Google Scholar 

  11. V. Barone, Phys. Lett. B 409, 499 (1997)

    Article  ADS  Google Scholar 

  12. C. Bourrely, J. Soffer, O.V. Teryaev, Phys. Lett. B 420, 375 (1998)

    Article  ADS  Google Scholar 

  13. J. Soffer, Phys. Rev. Lett. 74, 1292 (1995)

    Article  ADS  Google Scholar 

  14. W. Vogelsang, Phys. Rev. D 57, 1886 (1998)

    Article  ADS  Google Scholar 

  15. G.R. Goldstein, R.L. Jaffe, X.-D. Ji, Phys. Rev. D 52, 5006 (1995)

    Article  ADS  Google Scholar 

  16. J. Ralston private communications

    Article  Google Scholar 

  17. QCDSF, M. Gockeler , Phys. Lett. B 627, 113 (2005)

    Article  ADS  Google Scholar 

  18. H.-X. He, X.-D. Ji, Phys. Rev. D 52, 2960 (1995)

    Article  ADS  Google Scholar 

  19. B.Q. Ma, I. Schmidt, J. Soffer, Phys. Lett. B 441, 461 (1998)

    Article  ADS  Google Scholar 

  20. L.P. Gamberg, G.R. Goldstein, Phys. Rev. Lett. 87, 242001 (2001)

    Article  ADS  Google Scholar 

  21. I.C. Cloet, W. Bentz, A.W. Thomas, Phys. Lett. B 659, 214 (2008)

    Article  ADS  Google Scholar 

  22. M. Wakamatsu, Phys. Lett. B 653, 398 (2007)

    Article  ADS  Google Scholar 

  23. B. Pasquini, M. Pincetti, S. Boffi, Phys. Rev. D 72, 094029 (2005)

    Article  ADS  Google Scholar 

  24. J.C. Collins, Nucl. Phys. B 396, 161 (1993)

    Article  ADS  Google Scholar 

  25. HERMES, A. Airapetian (2010), hep-ex/1006.4221

    Article  Google Scholar 

  26. HERMES, A. Airapetian , Phys. Rev. Lett. 103, 152002 (2009)

    Article  ADS  Google Scholar 

  27. HERMES, A. Airapetian , Phys. Rev. Lett. 94, 012002 (2005)

    Article  ADS  Google Scholar 

  28. COMPASS, M.G. Alekseev arXiv:1005.5609, CERN-PH-EP/2010-013

    Article  Google Scholar 

  29. D. W. Sivers, Phys. Rev. D 41, 83 (1990)

    Article  ADS  Google Scholar 

  30. G.L. Kane, J. Pumplin, W. Repko, Phys. Rev. Lett. 41, 1689 (1978)

    Article  ADS  Google Scholar 

  31. M. Anselmino, M. Boglione, F. Murgia, Phys. Lett. B 362, 164 (1995)

    Article  ADS  Google Scholar 

  32. J.C. Collins, Phys. Lett. B 536, 43 (2002)

    Article  ADS  Google Scholar 

  33. A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003)

    Article  ADS  MATH  Google Scholar 

  34. D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003)

    Article  ADS  Google Scholar 

  35. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002)

    Article  ADS  Google Scholar 

  36. X.-d. Ji, F. Yuan, Phys. Lett. B 543, 66 (2002)

    Article  ADS  Google Scholar 

  37. L.P. Gamberg, G.R. Goldstein, K.A. Oganessyan, Phys. Rev. D 67, 071504 (2003)

    Article  ADS  Google Scholar 

  38. M. Burkardt, Phys. Rev. D 69, 057501 (2004)

    Article  ADS  Google Scholar 

  39. M. Burkardt, Phys. Rev. D 72, 094020 (2005)

    Article  ADS  Google Scholar 

  40. S.J. Brodsky, S. Gardner, Phys. Lett. B 643, 22 (2006)

    Article  ADS  Google Scholar 

  41. T.-c. Meng, J.-c. Pan, Q.-b. Xie, W. Zhu, Phys. Rev. D 40, 769 (1989)

    Article  ADS  Google Scholar 

  42. M. Anselmino, M. Boglione, F. Murgia, Phys. Rev. D 60, 054027 (1999)

    Article  ADS  Google Scholar 

  43. COMPASS, V.Y. Alexakhin , Phys. Rev. Lett. 94, 202002 (2005)

    Article  ADS  Google Scholar 

  44. A. Bacchetta, A. Schaefer, J.-J. Yang, Phys. Lett. B 578, 109 (2004)

    Article  ADS  Google Scholar 

  45. Z. Lu, B.-Q. Ma, Nucl. Phys. A 741, 200 (2004)

    Article  ADS  Google Scholar 

  46. L.P. Gamberg, G.R. Goldstein, M. Schlegel (2007), 0708.2580

    Article  Google Scholar 

  47. A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78, 074010 (2008)

    Article  ADS  Google Scholar 

  48. B. Pasquini, F. Yuan, Phys. Rev. D 81, 114013 (2010)

    Article  ADS  Google Scholar 

  49. F. Yuan, Phys. Lett. B 575, 45 (2003)

    Article  ADS  Google Scholar 

  50. D. Amrath, A. Bacchetta, A. Metz, Phys. Rev. D 71, 114018 (2005)

    Article  ADS  Google Scholar 

  51. A. Bacchetta, L.P. Gamberg, G.R. Goldstein, A. Mukherjee, Phys. Lett. B 659, 234 (2008)

    Article  ADS  Google Scholar 

  52. A. Metz, Phys. Lett. B 549, 139 (2002)

    Article  ADS  Google Scholar 

  53. J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004)

    Article  ADS  Google Scholar 

  54. L.P. Gamberg, A. Mukherjee, P.J. Mulders, Phys. Rev. D 77, 114026 (2008)

    Article  ADS  Google Scholar 

  55. G.R. Goldstein, L. Gamberg Transversity and meson photoproduction, in Proceedings of ICHEP 2002 (North Holland, Amsterdam, 2003), p. 452, hep-ph/0209085

    Article  ADS  Google Scholar 

  56. Z. Lu, B.-Q. Ma, Phys. Rev. D 70, 09044 (2004)

    Google Scholar 

  57. H. Avakian , Phys. Rev. D 78, 114024 (2008)

    Article  ADS  Google Scholar 

  58. J. She, J. Zhu, B.-Q. Ma, Phys. Rev. D 79, 054008 (2009)

    Article  ADS  Google Scholar 

  59. B. Pasquini, S. Cazzaniga, F. Yuan, Phys. Rev. D 78, 034025 (2008)

    Article  ADS  Google Scholar 

  60. S. Boffi, A.V. Efremov, B. Pasquini, P. Schweitzer, Phys. Rev. D 79, 094012 (2009)

    Article  ADS  Google Scholar 

  61. V. Barone, Z. Lu, B.-Q. Ma, Phys. Lett. B 632, 277 (2006)

    Article  ADS  Google Scholar 

  62. V. Barone, A. Prokudin, B.-Q. Ma, Phys. Rev. D 78, 045022 (2008)

    Article  ADS  Google Scholar 

  63. M. Anselmino , Phys. Rev. D 75, 054032 (2007)

    Article  ADS  Google Scholar 

  64. COMPASS, E.S. Ageev , Nucl. Phys. B 765, 31 (2007)

    Article  ADS  Google Scholar 

  65. COMPASS, M. Alekseev , Phys. Lett. B 673, 127 (2009)

    Article  ADS  Google Scholar 

  66. Belle, K. Abe , Phys. Rev. Lett. 96, 232002 (2006)

    Article  ADS  Google Scholar 

  67. M. Anselmino , Nucl. Phys. Proc. Suppl. 191, 98 (2009)

    Article  ADS  Google Scholar 

  68. M. Anselmino , Eur. Phys. J. A 39, 89 (2009)

    Article  ADS  Google Scholar 

  69. M. Anselmino , Phys. Rev. D 72, 094007 (2005)

    Article  ADS  Google Scholar 

  70. M. Anselmino (2005), hep-ph/0511017

    Article  ADS  Google Scholar 

  71. M. Anselmino , Phys. Rev. D 71, 074006 (2005)

    Article  ADS  Google Scholar 

  72. J.C. Collins , Phys. Rev. D 73, 014021 (2006)

    Article  ADS  Google Scholar 

  73. J.P. Chen Jlab E06-010

    Article  ADS  Google Scholar 

  74. V. Barone, A. Drago, P.G. Ratcliffe, Phys. Rept. 359, 1 (2002)

    Article  ADS  MATH  Google Scholar 

  75. J.P. Chen Jlab E-10-006

    Article  Google Scholar 

  76. G.S. Atoian , Nucl. Instrum. Methods A 531, 467 (2004)

    Article  ADS  Google Scholar 

  77. G.S. Atoian , Nucl. Instrum. Methods A 584, 291 (2008)

    Article  ADS  Google Scholar 

  78. C. Altunbas , Nucl. Instrum. Methods A 490, 177 (2002)

    Article  ADS  Google Scholar 

  79. P. Abbon , Nucl. Instrum. Methods A 577, 455 (2007)

    Article  ADS  Google Scholar 

  80. R. Mankel, Rep. Prog. Phys. 67, 553 (2004)

    Article  ADS  Google Scholar 

  81. P. Souder Jlab E12-09-012

    Article  Google Scholar 

  82. Y. Wang , Chinese Phys. C 33, 374 (2009)

    Article  ADS  Google Scholar 

  83. M. Anselmino, A. Prokudin private communications

    Article  Google Scholar 

  84. W. Vogelsang, F. Yuan private communications

    Article  Google Scholar 

  85. H. Huang, J. She, B.-Q. Ma, Phys. Rev. D 76, 034004 (2007)

    Article  ADS  Google Scholar 

  86. B. Pasquini private communications

    Article  Google Scholar 

  87. CLAS(Collaboration) Jefferson Lab Letter-of-Intent LOI12-06-108 (2006)

    Article  ADS  Google Scholar 

  88. H. Avakian Jefferson Lab Proposal E12-06-112 (2006)

    Article  Google Scholar 

  89. H. Avakian Jefferson Lab Proposal E12-07-107 (2007)

    Article  Google Scholar 

  90. H. Avakian Jefferson Lab Proposal E12-09-008 (2009)

    Article  Google Scholar 

  91. H. Avakian Jefferson Lab Proposal E12-09-009 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Gamberg, L., Chen, J.P. et al. Transverse spin structure of the nucleon through target single-spin asymmetry in semi-inclusive deep-inelastic (e, e’\( \pi^{\pm}_{}\)) reaction at Jefferson Lab. Eur. Phys. J. Plus 126, 2 (2011). https://doi.org/10.1140/epjp/i2011-11002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11002-4

Keywords

Navigation