Skip to main content
Log in

Elasticity of DNA and the effect of dendrimer binding

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus \(\gamma_{1}\) of dsDNA in quantitative agreement with the literature value. The bend angle distribution \(P(\theta)\) of the dsDNA also has a Gaussian form and allows to extract a persistence length, Lp of 43nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shore, J. Langowski, R.L. Baldwin, Proc. Natl. Acad. Sci. USA. 78, 4833 (1981)

    Article  ADS  Google Scholar 

  2. J. Widom, Q. Rev. Biophys. 34, 269 (2001)

    Article  Google Scholar 

  3. K. Rippe, P.H. Vonhippel, J. Langowski, Trends Biochem. Sci. 20, 500 (1995)

    Article  Google Scholar 

  4. S.B. Smith, L. Finzi, C. Bustamante, Science 258, 1122 (1992)

    Article  ADS  Google Scholar 

  5. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599 (1994)

    Article  ADS  Google Scholar 

  6. S.B. Smith, Y.J. Cui, C. Bustamante, Science 271, 795 (1996)

    Article  ADS  Google Scholar 

  7. T.T. Perkins, S.R. Quake, D.E. Smith, S. Chu, Science 264, 822 (1994)

    Article  ADS  Google Scholar 

  8. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

  9. R.R. Netz, J.F. Joanny, Macromolecules 32, 9026 (1999)

    Article  ADS  Google Scholar 

  10. K.K. Kunze, R.R. Netz, Phys. Rev. Lett. 85, 4389 (2000)

    Article  ADS  Google Scholar 

  11. P.K. Maiti, T. Cagin, G.F. Wang, W.A. Goddard, Macromolecules 37, 6236 (2004)

    Article  ADS  Google Scholar 

  12. P.K. Maiti, T. Cagin, S.T. Lin, W.A. Goddard, Macromolecules 38, 979 (2005)

    Article  ADS  Google Scholar 

  13. S. Svenson, D.A. Tomalia, Adv. Drug Deliver. Rev. 57, 2106 (2005)

    Article  Google Scholar 

  14. P.K. Maiti, R. Messina, Macromolecules 41, 5002 (2008)

    Article  ADS  Google Scholar 

  15. P.K. Maiti, B. Bagchi, Nano Lett. 6, 2478 (2006)

    Article  ADS  Google Scholar 

  16. B. Nandy, P.K. Maiti, J. Phys. Chem. B 115, 217 (2011)

    Article  Google Scholar 

  17. B.Y. Ha, D. Thirumalai, J. Chem. Phys. 103, 9408 (1995)

    Article  ADS  Google Scholar 

  18. J. Wilhelm, E. Frey, Phys. Rev. Lett. 77, 2581 (1996)

    Article  ADS  Google Scholar 

  19. J. Samuel, S. Sinha, Phys. Rev. E 66, 050801 (2002)

    Article  ADS  Google Scholar 

  20. A. Dhar, D. Chaudhuri, Phys. Rev. Lett. 89, 065502 (2002)

    Article  ADS  Google Scholar 

  21. S. Stepanow, G.M. Schutz, Europhys. Lett. 60, 546 (2002)

    Article  ADS  Google Scholar 

  22. R.G. Winkler, J. Chem. Phys. 118, 2919 (2003)

    Article  ADS  Google Scholar 

  23. F. Valle, M. Favre, P. De Los Rios, A. Rosa, G. Dietler, Phys. Rev. Lett. 95, 158105 (2005)

    Article  ADS  Google Scholar 

  24. P. Ranjith, P.B.S. Kumar, G.I. Menon, Phys. Rev. Lett. 94, 138102 (2005)

    Article  ADS  Google Scholar 

  25. C. Hyeon, R.I. Dima, D. Thirumalai, J. Chem. Phys. 125, 194905 (2006)

    Article  ADS  Google Scholar 

  26. Y. Seol, J. Li, P.C. Nelson, T.T. Perkins, M.D. Betterton, Biophys. J. 93, 4360 (2007)

    Article  ADS  Google Scholar 

  27. R.S. Mathew-Fenn, R. Das, P.A.B. Harbury, Science 322, 446 (2008)

    Article  ADS  Google Scholar 

  28. C. Yuan, H. Chen, X.W. Lou, L.A. Archer, Phys. Rev. Lett. 100, 018102 (2008)

    Article  ADS  Google Scholar 

  29. R. Padinhateeri, G.I. Menon, Biophys. J. 104, 463 (2013)

    Article  ADS  Google Scholar 

  30. A.K. Mazur, Biophys. J. 91, 4507 (2006)

    Article  ADS  Google Scholar 

  31. A.K. Mazur, Phys. Rev. Lett. 98, 218102 (2007)

    Article  ADS  Google Scholar 

  32. A.K. Mazur, J. Phys. Chem. B 113, 2077 (2009)

    Article  Google Scholar 

  33. A.K. Mazur, Phys. Rev. E 80, 010901 (2009)

    Article  ADS  Google Scholar 

  34. C.-Y. Chen, C.-J. Su, S.-F. Peng, H.-L. Chen, H.-W. Sung, Soft Matter 7, 61 (2011)

    Article  ADS  Google Scholar 

  35. R. Dootz, A.C. Toma, T. Pfohl, Soft Matter 7, 8343 (2011)

    Article  ADS  Google Scholar 

  36. H. Boroudjerdi, A. Naji, R.R. Netz, Eur. Phys. J. E. 34, 72 (2011)

    Article  Google Scholar 

  37. C. Bustamante, J.C. Macosko, G.J.L. Wuite, Nat. Rev. Mol. Cell Biol. 1, 130 (2000)

    Article  Google Scholar 

  38. C. Gosse, V. Croquette, Biophys. J. 82, 3314 (2002)

    Article  Google Scholar 

  39. A. Lebrun, R. Lavery, Nucleic Acids Res. 24, 2260 (1996)

    Article  Google Scholar 

  40. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996)

    Article  ADS  Google Scholar 

  41. M. Santosh, P.K. Maiti, J. Phys.: Condens. Matter 21, 034113 (2009)

    Article  Google Scholar 

  42. M. Santosh, P.K. Maiti, Biophys. J. 101, 1393 (2011)

    Article  ADS  Google Scholar 

  43. O. Kratky, G. Porod, Recl. Trav. Chim. Pays-Bas-J. Roy. Neth. Chem. Soc. 68, 1106 (1949)

    Article  Google Scholar 

  44. P.A. Wiggins, T. Van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, P.C. Nelson, Nat. Nanotech. 1, 137 (2006)

    Article  ADS  Google Scholar 

  45. J. Li, P.C. Nelson, M.D. Betterton, Macromolecules 39, 8816 (2006)

    Article  ADS  Google Scholar 

  46. C. Bouchiat, M.D. Wang, J.F. Allemand, T. Strick, S.M. Block, V. Croquette, Biophys. J. 76, 409 (1999)

    Article  Google Scholar 

  47. L. Livadaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003)

    Article  ADS  Google Scholar 

  48. C. Storm, P.C. Nelson, Phys. Rev. E 67, 051906 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Rosa, T. Hoang, D. Marenduzzo, A. Maritan, Biophys. Chem. 115, 251 (2005)

    Article  Google Scholar 

  50. Ngo Minh Toan, D. Thirumalai, Macromolecules 43, 4394 (2010)

    Article  ADS  Google Scholar 

  51. P.K. Maiti, T.A. Pascal, N. Vaidehi, W.A. Goddard, Nucl. Acids Res. 32, 6047 (2004)

    Article  Google Scholar 

  52. P.K. Maiti, T.A. Pascal, N. Vaidehi, J. Heo, W.A. Goddard, Biophys. J. 90, 1463 (2006)

    Article  ADS  Google Scholar 

  53. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G.M. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J.M. Wang, P. Kollman, J. Comput. Chem. 24, 1999 (2003)

    Article  Google Scholar 

  54. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  55. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  Google Scholar 

  56. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)

    Article  ADS  Google Scholar 

  57. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327 (1977)

    Article  ADS  Google Scholar 

  58. R. Lavery, H. Skelnar, J. Biomol. Struct. Dyn. 6, 63 (1988)

    Article  Google Scholar 

  59. N.B. Becker, R. Everaers, Science 325, 538 (2009)

    Article  ADS  Google Scholar 

  60. A. Noy, R. Golestanian, Phys. Rev. Lett. 109, 228101 (2012)

    Article  ADS  Google Scholar 

  61. T. Odijk, Macromolecules 28, 7016 (1995)

    Article  ADS  Google Scholar 

  62. T.R. Einert, D.B. Staple, H.-J. Kreuzer, R.R. Netz, Biophys. J. 99, 578 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Mogurampelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogurampelly, S., Nandy, B., Netz, R.R. et al. Elasticity of DNA and the effect of dendrimer binding. Eur. Phys. J. E 36, 68 (2013). https://doi.org/10.1140/epje/i2013-13068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13068-1

Keywords

Navigation