Skip to main content
Log in

Dynamics of a polymer chain confined in a membrane

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, Molecular Biology of the Cell (Garland Science, New York, 2008)

  2. R. Peters, R.J. Cherry, Proc. Natl. Acad. Sci. U.S.A. 79, 4317 (1982)

    Article  ADS  Google Scholar 

  3. E.A.J. Reitz, J.J. Neefjes, Nat. Cell Biol. 3, E145 (2001)

    Article  Google Scholar 

  4. N. Kahya, E.-I. Pécheur, W.P. de Boeij, D.A. Wiersam, D. Hoekstra, Biophys. J. 81, 1464 (2001)

    Article  Google Scholar 

  5. N. Tsapis, F. Reiss-Husson, R. Ober, M. Genest, R.S. Hodges, W. Urbach, Biophys. J. 81, 1613 (2001)

    Article  Google Scholar 

  6. Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2007)

    Article  ADS  Google Scholar 

  7. D.F. Kucik, E.L. Olson, M.P. Sheetz, Biophys. J. 76, 314 (1999)

    Article  Google Scholar 

  8. J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Nat. Rev. Mol. Cell Biol. 2, 444 (2001)

    Article  Google Scholar 

  9. M. Vrljic, Y. Nishimura, S. Brasselet, W.E. Moerner, H.M. McConnell, Biophys. J. 83, 2681 (2002)

    Article  ADS  Google Scholar 

  10. A.K. Kenworthy, B.J. Nichols, C.L. Remmert, G.M. Hendrix, M. Kumar, J. Zimmerberg, J. Lippincott-Schwartz, J. Cell. Biol. 165, 735 (2004)

    Article  Google Scholar 

  11. P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)

    Article  ADS  Google Scholar 

  12. P.G. Saffman, J. Fluid Mech. 73, 593 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. B.D. Hughes, B.A. Pailthorpe, L.R. White, J. Fluid Mech. 110, 349 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. E. Evans, E. Sackmann, J. Fluid Mech. 194, 553 (1988)

    Article  ADS  MATH  Google Scholar 

  15. Y. Tserkovnyak, D.R. Nelson, Proc. Natl. Acad. Sci. U.S.A. 103, 15002 (2006)

    Article  ADS  Google Scholar 

  16. A.J. Levine, T.B. Liverpool, F.C. MacKintosh, Phys. Rev. Lett. 93, 038102 (2004)

    Article  ADS  Google Scholar 

  17. A.J. Levine, T.B. Liverpool, F.C. MacKintosh, Phys. Rev. E 69, 021503 (2004)

    Article  ADS  Google Scholar 

  18. Th.M. Fischer, J. Fluid Mech. 498, 123 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Y. Yang, R. Prudhomme, K.M. McGrath, P. Richetti, C.M. Marques, Phys. Rev. Lett. 12, 2729 (1998)

    Article  ADS  Google Scholar 

  20. M. Muthukumar, J. Chem. Phys. 82, 5696 (1985)

    Article  ADS  Google Scholar 

  21. S. Komura, K. Seki, J. Phys. II 5, 5 (1995)

    Article  Google Scholar 

  22. S. Ramaswamy, G.F. Mazenko, Phys. Rev. A 26, 1735 (1982)

    Article  ADS  Google Scholar 

  23. Y.Y. Suzuki, T. Izuyama, J. Phys. Soc. Jpn. 58, 1104 (1989)

    Article  ADS  Google Scholar 

  24. K. Seki, S. Komura, Phys. Rev. E 47, 2377 (1993)

    Article  ADS  Google Scholar 

  25. K. Seki, S. Komura, M. Imai, J. Phys.: Condens. Matter 19, 072101 (2007)

    Article  ADS  Google Scholar 

  26. B. Maier, J.O. Rädler, Phys. Rev. Lett. 82, 1911 (1999)

    Article  ADS  Google Scholar 

  27. B. Maier, J.O. Rädler, Macromolecules 33, 7185 (2000)

    Article  ADS  Google Scholar 

  28. B. Maier, J.O. Rädler, Macromolecules 34, 5723 (2001)

    Article  ADS  Google Scholar 

  29. C. Herold, P. Schwille, E.P. Petrov, Phys. Rev. Lett. 104, 148102 (2010)

    Article  ADS  Google Scholar 

  30. M. Daoud, P.G. de Gennes, J. Phys. 38, 85 (1977)

    Article  Google Scholar 

  31. F. Brochard, J. Phys. 38, 1285 (1977)

    Article  Google Scholar 

  32. P.G. de Gennes, F. Brochard, J. Chem. Phys. 67, 52 (1977)

    Article  ADS  Google Scholar 

  33. T. Tlusty, Macromolecules 39, 3927 (2006)

    Article  ADS  Google Scholar 

  34. P.K. Lin, C.C. Fu, Y.R. Chen, P.K. Wei, C.H. Kuan, W.S. Fann, Phys. Rev. E 76, 011806 (2007)

    Article  ADS  Google Scholar 

  35. K. Inaura, Y. Fujitani, J. Phys. Soc. Jpn. 77, 114603 (2008)

    Article  ADS  Google Scholar 

  36. M. Kraus, U. Seifert, J. Phys. II 4, 1117 (1994)

    Article  Google Scholar 

  37. N. Gov, A.G. Zilman, S. Safran, Phys. Rev. E 70, 011104 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Sankararaman, G.I. Menon, P.B.S. Kumar, Phys. Rev. E 66, 031914 (2002)

    Article  ADS  Google Scholar 

  39. D.K. Lubensky, R.E. Goldstein, Phys. Fluids 8, 843 (1996)

    Article  ADS  MATH  Google Scholar 

  40. N. Oppenheimer, H. Diamant, Biophys. J. 96, 3041 (2009)

    Article  ADS  Google Scholar 

  41. N. Oppenheimer, H. Diamant, Phys. Rev. E 82, 041912 (2010)

    Article  ADS  Google Scholar 

  42. H. Stone, A. Ajdari, J. Fluid Mech. 369, 151 (1998)

    ADS  MATH  Google Scholar 

  43. S. Ramachandran, S. Komura, M. Imai, K. Seki, Eur. Phys. J. E 31, 303 (2010)

    Article  Google Scholar 

  44. D.L. Ermak, J.A. McCammon, J. Chem. Phys. 69, 1352 (1978)

    Article  ADS  Google Scholar 

  45. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  46. B.H. Zimm, J. Chem. Phys. 24, 269 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  47. W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1968)

  48. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

  49. S. Ramachandran, S. Komura, G. Gompper, EPL 89, 56001 (2010)

    Article  ADS  Google Scholar 

  50. H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)

    Article  ADS  Google Scholar 

  51. M. Rubinstein, R.H. Colby, Polymer Physics (University Press, Oxford, 2004)

  52. R.M. Johnson, J.L. Schrag, J.D. Ferry, Polymer J. 1, 742 (1970)

    Article  Google Scholar 

  53. W.H. Stockmayer, B. Hammouda, Pure Appl. Chem. 56, 1373 (1984)

    Article  Google Scholar 

  54. Y. Kaizuka, J.T. Groves, Biophys. J. 86, 905 (2004)

    Article  ADS  Google Scholar 

  55. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, London, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Komura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, S., Komura, S., Seki, K. et al. Dynamics of a polymer chain confined in a membrane. Eur. Phys. J. E 34, 46 (2011). https://doi.org/10.1140/epje/i2011-11046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11046-3

Keywords

Navigation