Skip to main content
Log in

Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: \(\ensuremath T_{{\rm g}}({\rm bulk})-T_{{\rm g}}(23{\,\mbox{nm}})= 10 ^{\circ}\) C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Article  ADS  Google Scholar 

  2. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994).

    Article  Google Scholar 

  3. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  4. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).

    Article  ADS  Google Scholar 

  5. C.B. Roth, J.R. Dutcher, J. Electroanal. Chem. 584, 13 (2005).

    Article  Google Scholar 

  6. K.L. Ngai, J. Polym. Sci. Part B: Polym. Phys. 44, 2980 (2006).

    Article  Google Scholar 

  7. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B: Polym. Phys. 44, 2951 (2006).

    Article  Google Scholar 

  8. S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001).

    Article  ADS  Google Scholar 

  9. O.K.C. Tsui, H.F. Zhang, Macromolecules 34, 9139 (2001).

    Article  ADS  Google Scholar 

  10. D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001).

    Article  ADS  Google Scholar 

  11. Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).

    Article  Google Scholar 

  12. Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005).

    Article  ADS  Google Scholar 

  13. C.H. Park, J.H. Kim, M. Ree, B.H. Sohn, J.C. Jung, W.C. Zin, Polymer 45, 4507 (2004).

    Article  Google Scholar 

  14. C.G. Campbell, B.D. Vogt, Polymer 48, 7169 (2007).

    Article  Google Scholar 

  15. A. Raegen, M. Massa, J. Forrest, K. Dalnoki-Veress, Eur. Phys. J. E 27, 375 (2008).

    Article  Google Scholar 

  16. K. Fukao, Y. Miyamoto, Europhys. Lett. 46, 649 (1999).

    Article  ADS  Google Scholar 

  17. K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000).

    Article  ADS  Google Scholar 

  18. R.D. Priestley, L.J. Broadbelt, J.M Torkelson, K. Fukao, Phys. Rev. E 75, 061806 (2007).

    Article  ADS  Google Scholar 

  19. M. Wubbenhorst, C.A. Murray, J.R. Dutcher, Eur. Phys. J. E 12, S109 (2003).

    Article  Google Scholar 

  20. S. Napolitano, M. Wubbenhorst, J. Phys. Chem. B 111, 9197 (2007).

    Article  Google Scholar 

  21. S. Peter, S. Napolitano, H. Meyer, M. Wubbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008).

    Article  ADS  Google Scholar 

  22. D. Labahn, R. Mix, A. Schonhals, Phys. Rev. E. 79, 011801 (2009).

    Article  ADS  Google Scholar 

  23. J.H. van Zanten, W.E. Wallace, W.L. Wu, Phys. Rev. E 53, R2053 (1996).

    Article  ADS  Google Scholar 

  24. O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).

    Article  ADS  Google Scholar 

  25. T. Miyazaki, K. Nishida, T. Kanaya, Phys. Rev. E 69, 061803 (2004).

    Article  ADS  Google Scholar 

  26. G.B. DeMaggio, W.E. Frieze, D.W. Gidley, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997).

    Article  ADS  Google Scholar 

  27. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).

    Article  ADS  Google Scholar 

  28. D.B. Hall, J.C. Hooker, J.M. Torkelson, Macromolecules 30, 667 (1997).

    Article  ADS  Google Scholar 

  29. C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002).

    Article  Google Scholar 

  30. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).

    Article  ADS  Google Scholar 

  31. C.J. Ellison, R.L. Ruszkowski, N.J. Fredin, J.M. Torkelson, Phys. Rev. Lett. 92, 095702 (2004).

    Article  ADS  Google Scholar 

  32. R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Macromolecules 38, 654 (2005).

    Article  ADS  Google Scholar 

  33. C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005).

    Article  ADS  Google Scholar 

  34. R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309, 456 (2005).

    Article  ADS  Google Scholar 

  35. M.K. Mundra, C.J. Ellison, R.E. Behling, J.M. Torkelson, Polymer 47, 7747 (2006).

    Article  Google Scholar 

  36. R.D. Priestley, M.K. Mundra, N.J. Barnett, L.J. Broadbelt, J.M. Torkelson, Aust. J. Chem. 60, 765 (2007).

    Article  Google Scholar 

  37. C.B. Roth, K.L. McNerny, W.F. Jager, J.M. Torkelson, Macromolecules 40, 2568 (2007).

    Article  ADS  Google Scholar 

  38. C.B. Roth, J.M. Torkelson, Macromolecules 40, 3328 (2007).

    Article  ADS  Google Scholar 

  39. M.K. Mundra, S.K. Donthu, V.P. Dravid, J.M. Torkelson, Nano Lett. 7, 713 (2007).

    Article  ADS  Google Scholar 

  40. P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007).

    Article  ADS  Google Scholar 

  41. M.K. Mundra, C.J. Ellison, P. Rittigstein, J.M. Torkelson, Eur. Phys. J. ST 141, 143 (2007).

    Google Scholar 

  42. K. Tanaka, Y. Tateishi, Y. Okada, T. Nagamura, M. Doi, H. Morita, J. Phys. Chem. B 113, 4571 (2009).

    Article  Google Scholar 

  43. H. Yang, J.S. Sharp, Macromolecules 41, 4811 (2008).

    Article  ADS  Google Scholar 

  44. J.L. Keddie, R.A.L. Jones, Israel J. Chem. 35, 21 (1995).

    Google Scholar 

  45. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  ADS  Google Scholar 

  46. J. Mattsson, J.A. Forrest, L. Borjesson, Phys. Rev. E 62, 5187 (2000).

    Article  ADS  Google Scholar 

  47. C.B. Roth, A. Pound, S.W. Kamp, C.A. Murray, J.R. Dutcher, Eur. Phys. J. E 20, 441 (2006).

    Article  Google Scholar 

  48. H. Liem, J. Cabanillas-Gonzalez, P. Etchegoin, D.D.C. Bradley, J. Phys.: Condens. Matter 16, 721 (2004).

    Article  ADS  Google Scholar 

  49. T. Miyazaki, R. Inoue, K. Nishida, T. Kanaya, Eur. Phys. J. ST 141, 203 (2007).

    Google Scholar 

  50. P.A. O’Connell, S.A. Hutcheson, G.B. McKenna, J. Polym. Sci. Part B: Polym. Phys. 46, 1952 (2008).

    Article  Google Scholar 

  51. S. Kim, C.B. Roth, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 46, 2754 (2008).

    Article  Google Scholar 

  52. C. Rotella, S. Napolitano, M. Wubbenhorst, Macromolecules 42, 5 (2009).

    Article  Google Scholar 

  53. T.S. Jain, J.J. de Pablo, Phys. Rev. Lett. 92, 155505 (2004).

    Article  ADS  Google Scholar 

  54. D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. 38, 2039 (1998).

    Article  Google Scholar 

  55. G.B. McKenna, Eur. Phys. J. ST 141, 291 (2007).

    Google Scholar 

  56. J. Kim, M.M. Mok, R.W. Sandoval, D.J. Woo, J.M. Torkelson, Macromolecules 39, 6152 (2006).

    Article  ADS  Google Scholar 

  57. J. Brandrup, E.H. Immergut, Polymer Handbook (Wiley, New York, 1989).

    Google Scholar 

  58. R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378 (1984).

    Article  Google Scholar 

  59. R. Seemann, K. Jacobs, K. Landfester, S. Herminghaus, J. Polym. Sci. Part B: Polym. Phys. 44, 2968 (2006).

    Article  Google Scholar 

  60. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).

    Google Scholar 

  61. Y.S. Lipatov, T.E. Geller, Polym. Sci. USSR 9, 244 (1967).

    Article  Google Scholar 

  62. P. Rittigstein, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 44, 2935 (2006).

    Article  Google Scholar 

  63. B.J. Ash, L.S. Schadler, R.W. Siegel, Mater. Lett. 55, 83 (2002).

    Article  Google Scholar 

  64. L.S. Schadler, S.K. Kumar, B.C. Beniecewicz, S.L. Lewis, S.E. Harton, MRS Bull. 32, 335 (2007).

    Google Scholar 

  65. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Nat. Nanotech. 3, 327 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Torkelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Hewlett, S.A., Roth, C.B. et al. Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films. Eur. Phys. J. E 30, 83–92 (2009). https://doi.org/10.1140/epje/i2009-10510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10510-y

PACS

Navigation