Skip to main content
Log in

The relaxation dynamics of a confined glassy simple liquid

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We use molecular-dynamics computer simulations to study the relaxation dynamics of a confined simple liquid. Two types of confining walls are considered: A rough wall and a smooth wall. The simulation is set up in such a way that the static properties of the confined system are identical to the ones of the bulk. Nevertheless, we find that upon cooling the relaxation dynamics of the confined systems differ strongly from the one of the bulk. In particular, we find that close to the rough/smooth wall this dynamics is slowed down/accelerated by orders of magnitude. Using these results we are able to extract a dynamical length scale of the system and we show that this length shows an Arrhenius dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Oring, The Material Science of Thin Films (Academic Press, San Diego, 1992).

  2. Proceedings of Dynamics in Confinement, Grenoble, Jan. 2000, J. Phys. IV 10, Pr7 (2000).

  3. J.M. Drake, J. Klafter, P. Levitz, R.M. Overney, M. Urbakh (Editors), Dynamics in Small Confining Systems V, MRS Fall Meeting 2000, Mat. Res. Soc. Proc. 651 (2001).

  4. K.L. Ngai, Proceedings of the 4th International Discussion Meeting on Relaxations in Complex Systems, J. Non-Cryst. Solids 307-310 (2002).

  5. W. Götze, J. Phys. Condens. Matter 11, A1 (1999).

  6. W. Kauzmann, Chem. Rev. 9, 219 (1948).

    Google Scholar 

  7. G. Adams, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Google Scholar 

  8. J.-Y. Park, G.B. McKenna, Phys. Rev. B 61, 6667 (2000).

    Article  Google Scholar 

  9. J. Warnock, D.D. Awschalom, M.W. Shafer, Phys. Rev. Lett. 57, 1753 (1986).

    Article  Google Scholar 

  10. J. Schüller, Yu.B. Mel’nichenko, R. Richert, E.W. Fischer, Phys. Rev. Lett. 73, 2224 (1994).

    Article  Google Scholar 

  11. P. Pissis, A. Kyritsis, D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, J. Phys. Condens. Matter 10, 6205 (1998).

    Article  Google Scholar 

  12. M. Arndt, R. Stannarius, H. Groothues, E. Hemperl, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997).

    Article  Google Scholar 

  13. C.L. Jackson, G.B. McKenna, J. Non-Cryst. Solids 131, 221 (1991)

    Article  Google Scholar 

  14. R. Richert, Phys. Rev. B 54, 15762 (1996).

    Article  Google Scholar 

  15. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  Google Scholar 

  16. F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, J. Phys. Condens. Matter 11, A175 (1999).

  17. H. Wendt, R. Richert, J. Phys. Condens. Matter 11, A199 (1999).

  18. R. Zorn, L. Hartmann, B. Frick, F. Kremer, J. Non-Cryst. Solids 307-310, 547 (2002).

    Google Scholar 

  19. D. Sappelt, J. Jäckle, J. Phys. A Math. Gen. 26, 7325 (1993).

    Article  Google Scholar 

  20. T. Fehr, H.W. Löwen, Phys. Rev. E 52, 4016 (1995).

    Article  Google Scholar 

  21. Z.T. Németh, H. Löwen, Phys. Rev. E, 59, 6824 (1999).

    Google Scholar 

  22. F. Varnik, J. Baschnagel, K. Binder, J. Phys. IV 10, Pr7, 239 (2000).

    Google Scholar 

  23. J. Baschnagel, K. Binder, J. Phys. I 6, 1271 (1996).

    Article  Google Scholar 

  24. B. Böddeker, H. Teichler, Phys. Rev. E 59, 1948 (1999).

    Article  Google Scholar 

  25. P. Gallo, M. Rovere, M.A. Ricci, C. Hartnig, E. Spohr, Europhys. Lett. 49, 183 (2000).

    Google Scholar 

  26. P. Gallo, M. Rovere, E. Spohr, Phys. Rev. Lett. 85, 4317 (2000).

    Article  Google Scholar 

  27. F.W. Starr, T.B. Schroder, S.C. Glotzer, Phys. Rev. E 64, 021802 (2001).

    Article  Google Scholar 

  28. J. Jäckle, J. Phys. Condens. Matter 14, 1423 (2002).

    Article  Google Scholar 

  29. P. Gallo, R. Pellarin, M. Rovere, Europhys. Lett. 57, 212 (2002).

    Google Scholar 

  30. V. Teboul, C. Alba-Simionesco, J. Phys. Condens. Matter 14, 5699 (2002).

    Article  Google Scholar 

  31. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995).

    Article  Google Scholar 

  32. W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995).

    Article  Google Scholar 

  33. P. Scheidler, PhD Thesis, University of Mainz (2001).

  34. P. Scheidler, W. Kob, K. Binder, to be published.

  35. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, London, 1986).

  36. E. Donth, The Glass Transition (Springer, Berlin, 2001).

  37. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002).

    Google Scholar 

  38. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

    Article  Google Scholar 

  39. P. Scheidler, W. Kob, K. Binder, G. Parisi, Philos. Mag. B 82, 283 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kob.

Additional information

Received: 1 January 2003, Published online: 14 October 2003

PACS:

64.70.Pf Glass transitions - 68.15. + e Liquid thin films - 02.70.Ns Molecular dynamics and particle methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a confined glassy simple liquid. Eur. Phys. J. E 12, 5–9 (2003). https://doi.org/10.1140/epje/i2003-10041-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10041-7

Keywords

Navigation