Skip to main content
Log in

Coherence in a dissipative two-level system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Inhibited decoherence has been recently observed in a dissipative two-level system by increasing the strength of the coupling with the reservoir. The system is described by the spin-boson model under a perturbation approach in the delocalized phase regime occurring in weak-coupling limit at zero temperature. Within this scenario, persistence of coherence is found over long times for various low frequency structures of the bosonic environment near a band gap. Special resonances provoke transitions in the long time dynamics if the transition amplitude of the two-level system is greater than the band gap frequency or in absence of any band gap. These transitions may hinder the the loss of coherence in the spin-boson model. Limitations of the approximations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  2. U. Weiss, Quantum Dissipative systems, 3rd edn. (World Scientific, Singapore, 2008)

  3. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang,Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  5. H. Zheng, Eur. Phys. J. B 38, 559 (2004)

    Article  ADS  Google Scholar 

  6. Z. Lü, H. Zheng, Phys. Rev. B 75, 054302 (2007)

    Article  ADS  Google Scholar 

  7. A.W. Chin, Phys. Rev. B 76, 201307(R) (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. V.M. Kenkre, L. Giuggioli, Chem. Phys. 296, 135 (2004)

    Article  ADS  Google Scholar 

  9. L. Bonci, P. Grigolini, R. Roncaglia, D. Vitali, Phys. Rev. A 47, 3538 (1993)

    Article  ADS  Google Scholar 

  10. R. Bulla, N.-H. Tong, M. Vojta, Phys. Rev. Lett. 91, 170601 (2003)

    Article  ADS  Google Scholar 

  11. M. Vojta, R. Bulla, F. Güttge, F. Anders, Phys. Rev. B 81, 075122 (2010)

    Article  ADS  Google Scholar 

  12. M. Vojta, Phys. Rev. B 85, 115113 (2012)

    Article  ADS  Google Scholar 

  13. A. Winter, H. Rieger, M. Vojta, R. Bulla, Phys. Rev. Lett. 102, 030601 (2009)

    Article  ADS  Google Scholar 

  14. Y.-Y. Zhang, Q.-H. Chen, K.-L. Wang, Phys. Rev. B 81, 121105(R) (2010)

    Article  ADS  Google Scholar 

  15. H. Dekker, Phys. Rev. A 35, 1436 (1987)

    Article  ADS  Google Scholar 

  16. S. Sachdev, Quantum Phase Transition (Cambridge University Press, Cambridge, 1999)

  17. A. Chin, M. Turlakov, Phys. Rev. B 73, 075311 (2006)

    Article  ADS  Google Scholar 

  18. Q. Wang, A.-Y. Hu, H. Zheng, Phys. Rev. B 80, 214301 (2009)

    Article  ADS  Google Scholar 

  19. F.B. Anders, R. Bulla, M. Vojta, Phys. Rev. Lett 98, 210402 (2007)

    Article  ADS  Google Scholar 

  20. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  21. A.W. Chin, J. Prior, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 107, 160601 (2011)

    Article  ADS  Google Scholar 

  22. M. Vojta, N.-H. Tong, R. Bulla, Phys. Rev. Lett. 94, 070604 (2005)

    Article  ADS  Google Scholar 

  23. H-B. Liu, J.-H. An, C. Chen, Q.-J. Tong, H.-G. Luo, C.H. Oh, Phys. Rev. A 87, 052139 (2013)

    Article  ADS  Google Scholar 

  24. Q.-J. Tong, J.-H. An, H.-G. Luo, C.H. Oh, Phys. Rev. B 84, 174301 (2011)

    Article  ADS  Google Scholar 

  25. N.-H. Tong, M. Vojta, Phys. Rev. Lett. 97, 016802 (2006)

    Article  ADS  Google Scholar 

  26. D. Porras, F. Marquardt, J. von Delft, J.I. Cirac, Phys. Rev. A 78, 010101(R) (2008)

    Article  ADS  Google Scholar 

  27. J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  28. K.W. Murch, U. Vool, D. Zhou, S.J. Weber, S.M. Girvin, I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012)

    Article  ADS  Google Scholar 

  29. Y. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  30. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  31. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  32. S. John, T. Quang, Phys. Rev. A 50, 1764 (1994)

    Article  ADS  Google Scholar 

  33. S. John, T. Quang, Phys. Rev. Lett. 74, 3419 (1995)

    Article  ADS  Google Scholar 

  34. S. John, T. Quang, Phys. Rev. Lett. 78, 1888 (1997)

    Article  ADS  Google Scholar 

  35. T. Quang, M. Woldeyohannes, S. John, Phys. Rev. Lett. 79, 5238 (1997)

    Article  ADS  Google Scholar 

  36. D. Angelakis, E. Paspalakis, P. Kinght, Contemp. Phys. 45, 303 (2004)

    Article  ADS  Google Scholar 

  37. Q.-J. Tong, J.-H. An, H.-G. Luo, C.H. Oh, Quantum Inf. Comput. 11, 0874 (2011)

    MathSciNet  Google Scholar 

  38. J.D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)

  39. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  40. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer-Verlag, Berlin, New York, 2004)

  41. R. Silbey, R.A. Harris, J. Chem. Phys. 80, 2615 (1984)

    Article  ADS  Google Scholar 

  42. A.A. Mathai, R.K. Saxena, H.J. Haubold, The H-Function, Theory and Applications (Springer, 2009)

  43. F. Giraldi, F. Petruccione, Phys. Rev. A 85, 062107 (2012)

    Article  ADS  Google Scholar 

  44. B.M. Garraway, Phys. Rev. A 55, 2290 (1997)

    Article  ADS  Google Scholar 

  45. B.M. Garraway, Phys. Rev. A 55, 4636 (1997)

    Article  ADS  Google Scholar 

  46. B.J. Dalton, S.M. Barnett, B.M. Garraway, Phys. Rev. A 64, 053813 (2001)

    Article  ADS  Google Scholar 

  47. I.E. Linington, B.M. Garraway, J. Phys. B 39, 3383 (2006)

    Article  ADS  Google Scholar 

  48. I.E. Linington, B.M. Garraway, Phys. Rev. A 77, 033831 (2008)

    Article  ADS  Google Scholar 

  49. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 59 (1963)

    Article  Google Scholar 

  50. B. Vacchini, H.P. Breuer, Phys. Rev. A 81, 042103 (2010)

    Article  ADS  Google Scholar 

  51. B. Praux, R. Bhatt, P.L. Knight, Phys. Rev. A 41, 6296 (1990)

    Article  ADS  Google Scholar 

  52. A.G. Kofman, G. Kurizki, B. Sherman, J. Mod. Opt. 41, 353 (1994)

    Article  ADS  Google Scholar 

  53. A.G. Kofman, G. Kurizki, Phys. Rev. Lett. 93, 130406 (2004)

    Article  ADS  Google Scholar 

  54. G. Gordon, G. Kurizki, D.A. Lidar, Phys. Rev. Lett. 101, 010403 (2008)

    Article  ADS  Google Scholar 

  55. A.G. Kofman, G. Kurizki, Nature 405, 546 (2000)

    Article  ADS  Google Scholar 

  56. A.G. Kofman, G. Kurizki, Phys. Rev. Lett. 87, 270405 (2001)

    Article  Google Scholar 

  57. R. Wong, Y.-Q. Zhao, Proc. R. Soc. Lond. A 458, 625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  58. H.S. Wall,Analytic Theory of Continued Fractions (D. Van Nostrand Company Inc., 1948)

  59. J. Prior, A.W. Chin, A. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050404 (2010)

    Article  ADS  Google Scholar 

  60. A.W. Chin, A. Rivas, S.F. Huelga, M.B. Plenio, J. Math. Phys. 51, 092109 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  61. J. Prior, I. de Vega, A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. A 87, 013428 (2013)

    Article  ADS  Google Scholar 

  62. J.M. Bendickson, J.P. Dowling, M. Scalora, Phys. Rev. E 53, 4107 (1996)

    Article  ADS  Google Scholar 

  63. C.W. Wong, X. Yang, P.T. Rackic, S.G. Johnson, M. Qi, Y. Jeon, G. Barbastathis, S. Kim, Appl. Phys. Lett. 84, 1242 (2004)

    Article  ADS  Google Scholar 

  64. S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Nature 390, 143 (1997)

    Article  ADS  Google Scholar 

  65. R. Dicke, Phys. Rev. 93, 99 (1954)

    Article  MATH  ADS  Google Scholar 

  66. A.V. Andreev, V.I. Emel’yanov, Yu.A. Ill’inskii, Cooperative Effects in Optics, Superradiance and Phase Transitions, Malvern Physics (Institute of Physics Pub., Bristol, Philadelphia, 1993)

  67. J.D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, Princeton, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giraldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldi, F., Petruccione, F. Coherence in a dissipative two-level system. Eur. Phys. J. D 68, 144 (2014). https://doi.org/10.1140/epjd/e2014-40720-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40720-8

Keywords

Navigation