Skip to main content
Log in

Novel electrodynamic trapping mechanism for neutral, polar particles

  • Regular Article
  • Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A conceptually new trapping mechanism for neutral, polar particles is introduced and discussed. Unlike existing mechanisms that are based on oscillating saddle-point potentials or rotating electric dipole fields, the new mechanism is based on a superposition of ac and dc electric monopolefields that dynamically generate a minimum of the effective ponderomotive potential in which the particles are trapped. Extensive numerical simulations of the dynamics and the stability properties of trapped HC17N molecules and ferroelectric rods (made of barium titanate or croconic acid crystals) prove the validity of the new mechanism. The examples show that the same mechanism is applicable to the trapping of macroscopic as well as microscopic particles. The numerical results are backed by a physical pseudo-potential picture and an analytical stability analysis that provide physical insight into why and how the new mechanism works. A semi-quantum, Born-Oppenheimer-type calculation that treats the intrinsic rotational degree of freedom of HC17N quantum mechanically is also presented. A detailed discussion of engineering aspects shows that laboratory implementation of the new mechanism is within current technological reach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004)

    Article  ADS  Google Scholar 

  2. B. Friedrich, J.M. Doyle, Chem. Phys. Chem. 10, 604 (2009)

    Article  Google Scholar 

  3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  4. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. Quantum Information Processing, edited by G. Leuchs, Th. Beth (Wiley-VCH, Weinheim, 2003)

  6. H. Sabbah, L. Biennier, I.R. Sims, Yu. Georgievskii, S.J. Klippenstein, I.W.M. Smith, Science 317, 102 (2007)

    Article  ADS  Google Scholar 

  7. S. Ospelhaus, K.-K. Ni, D. Wang, M.H.G. de Miranda, B. Neyenhuis, G. Quéméner, P.S. Julienne, J.L. Bohn, D.S. Jin, J. Ye, Science 327, 853 (2010)

    Article  ADS  Google Scholar 

  8. V.V. Vladimirskii, Sov. Phys. JETP 12, 740 (1961)

    Google Scholar 

  9. W.H. Wing, Phys. Rev. Lett. 45, 631 (1980)

    Article  ADS  Google Scholar 

  10. S.K. Sekatskii, JETP Lett. 62, 916 (1995)

    ADS  Google Scholar 

  11. S.K. Sekatskii, J. Schmiedmayer, Europhys. Lett. 36, 407 (1996)

    Article  ADS  Google Scholar 

  12. H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature 406, 491 (2000)

    Article  ADS  Google Scholar 

  13. J. van Veldhoven, H.L. Bethlem, G. Meijer, Phys. Rev. Lett. 94, 083001 (2005)

    Article  ADS  Google Scholar 

  14. H.L. Bethlem, J. van Veldhoven, M. Schnell, G. Meijer, Phys. Rev. A 74, 063403 (2006)

    Article  ADS  Google Scholar 

  15. D. DeMillea, D.R. Glenn, J. Petricka, Eur. Phys. J. D 31, 375 (2004)

    Article  ADS  Google Scholar 

  16. R.V.E. Lovelace, C. Mehanian, T.J. Tommila, D.M. Lee, Nature 318, 30 (1985)

    Article  ADS  Google Scholar 

  17. A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985)

    Article  ADS  Google Scholar 

  18. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Biophys. J. 77, 2856 (1999)

    Article  Google Scholar 

  19. A. Ashkin, J.M. Dziedzic, Science 235, 1517 (1987)

    Article  ADS  Google Scholar 

  20. E. Peik, Eur. Phys. J. D 6, 179 (1999)

    Article  ADS  Google Scholar 

  21. N. Christofilos, Focusing System for Ions and Electrons, US Patent No. 2 736 799

  22. E.D. Courant, M.S. Livingston, H.S. Snyder, J.P. Blewett, Phys. Rev. 91, 202 (1953)

    Article  ADS  Google Scholar 

  23. E.D. Courant, M.S. Livingston, H.S. Snyder, Phys. Rev. 88, 1190 (1952)

    Article  ADS  MATH  Google Scholar 

  24. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  25. R. Blümel, Phys. Rev. A 83, 045402 (2011)

    Article  ADS  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1971), p. 476

  27. W.S. Yun, J.J. Urban, Q. Gu, H. Park, Nano Lett. 2, 447 (2002)

    Article  ADS  Google Scholar 

  28. J.B. Marion, S.T. Thornton, Classical Dynamics, 3rd edn. (Harcourt Brace Jovanovich, Fort Worth, 1988)

  29. Handbook of Chemistry and Physics, edited by R.C. Weast, 55th edn., 1974–1975 (CRC Press, Cleveland, OH, 1974), p. B-72

  30. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon Press, New York, 1962)

  31. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 463, 789 (2010)

    Article  ADS  Google Scholar 

  32. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Supplementaty Information on [31], http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08731.html

  33. C. Day, Phys. Today 63, 16 (2010)

    Article  Google Scholar 

  34. M.C. McCarthy, J.-U. Grabow, M.J. Travers, W. Chen, C.A. Gottlieb, P. Thaddeus, Astrophys. J 494, L231 (1998)

    Article  ADS  Google Scholar 

  35. I. Garrick-Bethell, Th. Clausen, R. Blümel, Phys. Rev. E 69, 056222 (2004)

    Article  ADS  Google Scholar 

  36. A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983)

  37. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

  38. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington DC, 1964)

  39. L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1960)

  40. H.G. Dehmelt, Adv. Atom. Mol. Phys. 3, 53 (1967)

    Article  Google Scholar 

  41. H. Friedrich, Theoretical Atomic Physics, 3rd edn. (Springer, Berlin, 2006)

  42. B.M. Lamb, G.J. Morales, Phys. Fluids 26, 3488 (1983)

    Article  ADS  MATH  Google Scholar 

  43. R. Blümel, J. Mehl, J. Statist. Phys. 68, 311 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. R. Blümel, B. Esser, Phys. Rev. Lett. 72, 3658 (1994)

    Article  ADS  Google Scholar 

  45. R. Blümel, B. Esser, Z. Phys. B 98, 119 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  46. F. Cooper, J.F. Dawson, D. Meredith, H. Shepard, Phys. Rev. Lett. 72, 1337 (1994)

    Article  ADS  Google Scholar 

  47. R. Blümel, W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 1997)

  48. L.C. Biedenharn, P.J. Brussaard, Coulomb Excitation (Clarendon Press, Oxford, 1965)

  49. Encyclopedia of Physics, edited by R.G. Lerner, G.L. Trigg, 2nd edn. (VCH Publishers, New York, 1991)

  50. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, N.J., 1951)

  51. R. Blümel, Phys. Rev. A 51, R30 (1995)

    Article  ADS  Google Scholar 

  52. K. Cummings, P.W. Laws, E.F. Redish, P.J. Cooney, Understanding Physics (John Wiley & Sons, NJ, 2004), Table 23-1, p. 664

  53. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Upper Saddle River, NJ, 1999)

  54. E. Riis, S.M. Barnett, Europhys. Lett. 21, 533 (1993)

    Article  ADS  Google Scholar 

  55. E. Riis, S.M. Barnett, Europhys. Lett. 30, 441 (1995)

    Article  ADS  Google Scholar 

  56. E.A. Cornell, Europhys. Lett. 30, 439 (1995)

    Article  ADS  Google Scholar 

  57. H.J. Loesch, Chem. Phys. 207, 427 (1996)

    Article  ADS  Google Scholar 

  58. H.J. Loesch, B. Scheel, Phys. Rev. Lett. 85, 2709 (2000)

    Article  ADS  Google Scholar 

  59. R.T. Jongma, G. von Helden, G. Berden, G. Meijer, Chem. Phys. Lett. 270, 304 (1997)

    Article  ADS  Google Scholar 

  60. R. Blümel, Appl. Phys. B 60, 119 (1995)

    Article  ADS  Google Scholar 

  61. E. Peik, J. Fletcher, J. Appl. Phys. 82, 5283 (1997)

    Article  ADS  Google Scholar 

  62. H. Dehmelt, N. Yu, Proc. Natl . Acad. Sci . USA 94, 10031 (1997)

    Article  ADS  Google Scholar 

  63. K.S. Yeong, J.T.L. Thong, J. Appl. Phys. 100, 114325 (2006)

    Article  ADS  Google Scholar 

  64. B.T. Seaman, M. Krämer, D.Z. Anderson, M.J. Holland, Phys. Rev. A 75, 023615 (2007)

    Article  ADS  Google Scholar 

  65. R.A. Pepino, J. Cooper, D.Z. Anderson, M.J. Holland Phys. Rev. Lett. 103, 140405 (2009)

    Article  ADS  Google Scholar 

  66. W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nature Phys. 2, 36 (2006)

    Article  ADS  Google Scholar 

  67. C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)

    Article  ADS  Google Scholar 

  68. S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)

    Article  ADS  Google Scholar 

  69. T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 92, 223001 (2004)

    Article  ADS  Google Scholar 

  70. F.M.H. Crompvoets, H.L. Bethlem, R.T. Jongma, G. Meijer, Nature 411, 174 (2001)

    Article  ADS  Google Scholar 

  71. H. Nishimura, G. Lambertson, J.G. Kalnins, H. Gould, Eur. Phys. J. D 31, 359 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Blümel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümel, R. Novel electrodynamic trapping mechanism for neutral, polar particles. Eur. Phys. J. D 64, 85–101 (2011). https://doi.org/10.1140/epjd/e2011-20208-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20208-y

Keywords

Navigation