Skip to main content
Log in

Structure of Mgn and Mg +n clusters up to n = 30

  • Clusters and Nanostructures
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present structure calculations of neutral and singly ionized Mg clusters of up to 30 atoms, as well as Na clusters of up to 10 atoms. The calculations have been performed using density functional theory (DFT) within the local (spin-)density approximation, ion cores are described by pseudopotentials. We have utilized a new algorithm for solving the Kohn-Sham equations that is formulated entirely in coordinate space and, thus, permits straightforward control of the spatial resolution. Our numerical method is particularly suitable for modern parallel computer architectures; we have thus been able to combine an unrestricted simulated annealing procedure with electronic structure calculations of high spatial resolution, corresponding to a plane-wave cutoff of 954 eV for Mg. We report the geometric structures of the resulting ground-state configurations and a few low-lying isomers. The energetics and HOMO-LUMO gaps of the ground-state configurations are carefully examined and related to their stability properties. No evidence for a non-metal to metal transition in neutral and positively charged Mg clusters is found in the regime of ion numbers examined here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brack, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  2. E. Serrano, G. Rus, J. García-Martínez, Renew. Sust. Energ. Rev. 13, 2373 (2009)

    Article  Google Scholar 

  3. G. Centi, S. Perathoner, Catal. Today 150, 151 (2010)

    Article  Google Scholar 

  4. http://www.limerec.net

  5. M. Aichinger, E. Krotscheck, Comput. Mater. Sci. 34, 188 (2005)

    Article  Google Scholar 

  6. E.R. Hernández, S. Janecek, M.S. Kaczmarski, E. Krotscheck, Phys. Rev. B 75, 075108 (2007)

    Article  ADS  Google Scholar 

  7. S.A. Chin, S. Janecek, E. Krotscheck, Chem. Phys. Lett. 470, 342 (2009)

    Article  ADS  Google Scholar 

  8. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  9. C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, M. Brajczewska, Phys. Rev. B 51, 14001 (1995)

    Article  ADS  Google Scholar 

  10. S. Kümmel, M. Brack, P.G. Reinhard, Phys. Rev. B 62, 7602 (2000)

    Article  ADS  Google Scholar 

  11. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  12. M. Itoh, V. Kumar, T. Adschiri, Y. Kawazoe, J. Chem. Phys. 131, 174510 (2009)

    Article  ADS  Google Scholar 

  13. J. Bowlan, A. Liang, W.A. de Heer, Phys. Rev. Lett. 106, 043401 (2010)

    Article  ADS  Google Scholar 

  14. T. Diederich, T. Döppner, J. Braune, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 86, 4807 (2001)

    Article  ADS  Google Scholar 

  15. T. Diederich, T. Döppner, T. Fennel, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. A 72, 023203 (2005)

    Article  ADS  Google Scholar 

  16. O. Thomas , W. Zheng , S. Xu , K.H. Bowen, Jr., Phys. Rev. Lett. 89, 213403 (2001)

    Article  ADS  Google Scholar 

  17. B.v. Issendorff, O. Cheshnovsky, Ann. Rev. Phys. Chem. 56, 549 (2005)

    Article  ADS  Google Scholar 

  18. J. Jellinek, P.H. Acioli, J. Phys. Chem. 106, 10919 (2002)

    Google Scholar 

  19. P.H. Acioli, J. Jellinek, Phys. Rev. Lett. 89, 213402 (2002)

    Article  ADS  Google Scholar 

  20. J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)

    Article  Google Scholar 

  21. S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998)

    Article  ADS  Google Scholar 

  22. K. Nauta, R.E. Miller, Science 287, 293 (2000)

    Article  ADS  Google Scholar 

  23. H.Y. Kim, S.M. Gatica, G. Stan, M.W. Cole, J. Low Temp. Phys. 156, 1 (2009)

    Article  ADS  Google Scholar 

  24. P.J. Ziemann , A.W. Castleman Jr., Z. Phys. D 20, 97 (1991)

    Article  ADS  Google Scholar 

  25. S.A. Chin, S. Janecek, E. Krotscheck, Comput. Phys. Commun. 180, 1700 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

    Article  ADS  Google Scholar 

  27. T.L. Beck, Rev. Mod. Phys. 72, 1041 (2000)

    Article  ADS  Google Scholar 

  28. T. Torsti et al., Phys. Stat. Sol. B 243, 1016 (2006)

    Article  ADS  Google Scholar 

  29. D. Feit , J.A. Fleck, Jr., J. Chem. Phys. 78, 301 (1982)

    Article  ADS  Google Scholar 

  30. Q. Sheng, IMA J. Numer. Anal. 9, 199 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Suzuki, J. Math. Phys. 32, 400 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. Suzuki, Phys. Lett. A 201, 425 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Suzuki, in Computer Simulation Studies in Condensed Matter Physics, edited by D.P. Landau, K.K. Mon, H.B. Schüttler (Springer, Berlin, 1996), Vol. VIII, pp. 1–6

  34. S.A. Chin, Phys. Lett. A 226, 344 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. M. Takahashi, M. Imada, J. Phys. Soc. Jpn 53, 3765 (1984)

    Article  ADS  Google Scholar 

  36. J. Auer, E. Krotscheck, S.A. Chin, J. Chem. Phys. 115, 6841 (2001)

    Article  ADS  Google Scholar 

  37. S.A. Chin, Celestial Mech. Dynam. Astronom. 106, 391 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Fermi, Il Nuovo Cimento 11, 157 (1934)

    Article  MATH  Google Scholar 

  39. A. Zunger, M.L. Cohen, Phys. Rev. B 18, 5449 (1978)

    Article  ADS  Google Scholar 

  40. M. Fuchs, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999)

    Article  ADS  MATH  Google Scholar 

  41. N. Binggeli, J.L. Martins, J.R. Chelikowsky, Phys. Rev. Lett. 68, 2956 (1992)

    Article  ADS  Google Scholar 

  42. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  43. H. Hellmann, Z. Phys. 85, 180 (1933)

    Article  ADS  MATH  Google Scholar 

  44. R.P. Feynman, Phys. Rev. 56, 340 (1939)

    Article  ADS  MATH  Google Scholar 

  45. D. Mitra, F. Romeo, A. Sangiovanni-Vincentelli, Adv. Appl. Probab. 18, 747 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. V. Bonacic-Koutecky, I. Boustani, M. Guest, J. Koutecky, J. Chem. Phys. 89, 4861 (1988)

    Article  ADS  Google Scholar 

  47. R. Poteau, F. Spiegelmann, Phys. Rev. B 45, 1878 (1992)

    Article  ADS  Google Scholar 

  48. I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Phys. Rev. A 65, 053203 (2002)

    Article  ADS  Google Scholar 

  49. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  50. V. Tevekeliyska, Y. Dong, M. Springborg, V.G. Grigoryand, Eur. Phys. J. D 43, 19 (2007)

    Article  ADS  Google Scholar 

  51. T. Baumert, C. Röttgermann, C. Rothenfusser, R. Thalweiser, V. Weiss, G. Gerber, Phys. Rev. Lett. 69, 1512 (1992)

    Article  ADS  Google Scholar 

  52. W. Ekardt, Z. Penzar, Phys. Rev. B 38, 4273 (1988)

    Article  ADS  Google Scholar 

  53. K. Clemenger, Phys. Rev. B 32, 1359 (1985)

    Article  ADS  Google Scholar 

  54. A. Köhn, F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 3, 711 (2001)

    Article  Google Scholar 

  55. A. Lyalin , I.A. Solov’yov , A.V. Solov’yov , W. Greiner, Phys. Rev. A 67, 063203 (2003)

    Article  ADS  Google Scholar 

  56. J. Akola, K. Rytkönen, M. Manninen, Eur. Phys. J. D 16, 21 (2001)

    Article  ADS  Google Scholar 

  57. P. Delaly, P. Ballone, J. Buttet, Phys. Rev. B 45, 3838 (1992)

    Article  ADS  Google Scholar 

  58. M. Liebrecht, Master’s thesis, JKU, Linz (2010), http://www.jku.at/itp/content/e61016/employee_groups_wiss61017/employees61996/subdocs104885/content104886/diplomarbeit_eng.pdf

  59. M. van Schilfgaarde, T. Kotani, S. Faleev, Phys. Rev. Lett. 96, 226402 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Krotscheck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janecek, S., Krotscheck, E., Liebrecht, M. et al. Structure of Mgn and Mg +n clusters up to n = 30. Eur. Phys. J. D 63, 377–390 (2011). https://doi.org/10.1140/epjd/e2011-10694-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10694-2

Keywords

Navigation