Skip to main content
Log in

Abstract.

In many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. On the other hand, the splitting of the Hamiltonian into a strong and an electromagnetic part cannot be performed in a unique manner, because photon loops generate ultraviolet divergences. In the present article, we propose a convention for disentangling the two effects: one matches the parameters of two theories - with and without electromagnetic interactions - at a given scale \(\mu_1\), referred to as the matching scale. This method enables one to analyse the separation of strong and electromagnetic contributions in a transparent manner. We first study in a Yukawa-type model the dependence of strong and electromagnetic contributions on the matching scale. In a second step, we investigate this splitting in the linear sigma model at one-loop order, and consider in some detail the construction of the corresponding low-energy effective Lagrangian, which exactly implements the splitting of electromagnetic and strong interactions carried out in the underlying theory. We expect these model studies to be useful in the interpretation of the standard low-energy effective theory of hadrons, leptons and photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Urech, Nucl. Phys. B 433, 234 (1995) [hep-ph/9405341]

    Article  Google Scholar 

  2. H. Neufeld, H. Rupertsberger, Z. Phys. C 71, 131 (1996) [hep-ph/9506448]

    Article  Google Scholar 

  3. U.-G. Meißner, S. Steininger, Phys. Lett. B 419, 403 (1998) [hep-ph/9709453]

    Article  Google Scholar 

  4. M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 12, 469 (2000) [hep-ph/9909284]

    Article  Google Scholar 

  5. V. Cirigliano, M. Knecht, H. Neufeld, H. Pichl, Eur. Phys. J. C 27, 255 (2003) [hep-ph/0209226]

    Google Scholar 

  6. V. Cirigliano, M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera, Eur. Phys. J. C 23, 121 (2002) [hep-ph/0110153]

    Google Scholar 

  7. J. Bijnens, Phys. Lett. B 306, 343 (1993) [hep-ph/9302217]

    Article  Google Scholar 

  8. J. Bijnens, J. Prades, Nucl. Phys. B 490, 239 (1997) [hep-ph/9610360]

    Article  Google Scholar 

  9. R. Baur, R. Urech, Nucl. Phys. B 499, 319 (1997) [hep-ph/9612328]

    Article  Google Scholar 

  10. B. Moussallam, Nucl. Phys. B 504, 381 (1997) [hep-ph/9701400]

    Article  Google Scholar 

  11. V.E. Lyubovitskij, Th. Gutsche, A. Faessler, R. Vinh Mau, Phys. Lett. B 520, 204 (2001) [hep-ph/0108134]

    Article  Google Scholar 

  12. U.G. Meißner, G. Müller, S. Steininger, Phys. Lett. B 406, 154 (1997) [Erratum B 407, 454 (1997)] [hep-ph/9704377]

    Article  Google Scholar 

  13. M. Knecht, R. Urech, Nucl. Phys. B 519, 329 (1998) [hep-ph/9709348]

    Article  Google Scholar 

  14. H. Jallouli, H. Sazdjian, Phys. Rev. D 58, 014011 (1998) [Erratum D 58, 099901 (1998)] [hep-ph/9706450]

    Article  Google Scholar 

  15. V. Cirigliano, G. Ecker, H. Neufeld, Phys. Lett. B 513, 361 (2001) [hep-ph/0104267]

    Article  Google Scholar 

  16. B. Ananthanarayan, B. Moussallam, JHEP 0205, 052 (2002) [hep-ph/0205232]

    Article  Google Scholar 

  17. For a recent review on this topic, see J. Bijnens, J. Gasser, Phys. Scripta T 99, 34 (2002) [hep-ph/0202242]. The literature on this issue may be traced back from this reference

    Google Scholar 

  18. K. Maltman, D. Kotchan, Mod. Phys. Lett. A 5, 2457 (1990)

    Google Scholar 

  19. As we have recently learned, similar ideas were developed independently by J. Gegelia [20]

  20. J. Gegelia, private communication

  21. J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982)

    Article  Google Scholar 

  22. J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984)

    MathSciNet  Google Scholar 

  23. A. Nyffeler, A. Schenk, Annals Phys. 241, 301 (1995) [hep-ph/9409436]

    Article  MathSciNet  Google Scholar 

  24. T. Das, Phys. Rev. Lett. 18, 759 (1967)

    Article  Google Scholar 

  25. B. Kubis, U.-G. Meißner, Nucl. Phys. A 671, 332 (2000) [Erratum A 692, 647 (2001)] [hep-ph/9908261]

    Article  Google Scholar 

  26. R. Kaiser, Phys. Rev. D 63, 076010 (2001) [hep-ph/0011377]

    Article  Google Scholar 

  27. K. Hagiwara [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 28 August 2003, Published online: 20 November 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, J., Rusetsky, A. & Scimemi, I. Electromagnetic corrections in hadronic processes. Eur. Phys. J. C 32, 97–114 (2003). https://doi.org/10.1140/epjc/s2003-01383-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2003-01383-1

Keywords

Navigation