Skip to main content
Log in

Effects of inhomogeneities on apparent cosmological observables: “fake” evolving dark energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Using the exact Lemaitre–Bondi–Tolman solution with a non-vanishing cosmological constant Λ, we investigate how the presence of a local spherically symmetric inhomogeneity can affect apparent cosmological observables, such as the deceleration parameter or the effective equation of state of dark energy (DE), derived from the luminosity distance under the assumption that the real space-time is exactly homogeneous and isotropic. The presence of a local underdensity is found to produce apparent phantom behavior of DE, while a locally overdense region leads to apparent quintessence behavior. We consider relatively small large scale inhomogeneities which today are not linear and could be seeded by primordial curvature perturbations compatible with CMB bounds. Our study shows how observations in an inhomogeneous ΛCDM universe with initial conditions compatible with the inflationary beginning, if interpreted under the wrong assumption of homogeneity, can lead to the wrong conclusion about the presence of “fake” evolving dark energy instead of Λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  2. J.L. Tonry et al. (Supernova Search Team Collaboration), Astrophys. J. 594, 1 (2003). arXiv:astro-ph/0305008

    Article  ADS  Google Scholar 

  3. R.A. Knop et al. (The Supernova Cosmology Project Collaboration), Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368

    Article  ADS  Google Scholar 

  4. B.J. Barris et al., Astrophys. J. 602, 571 (2004). arXiv:astro-ph/0310843

    Article  ADS  Google Scholar 

  5. A.G. Riess et al. (Supernova Search Team Collaboration), Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  6. S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  7. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207

    Article  ADS  Google Scholar 

  8. D.N. Spergel et al., arXiv:astro-ph/0603449

  9. Y. Nambu, M. Tanimoto, arXiv:gr-qc/0507057

  10. T. Kai, H. Kozaki, K.i. nakao, Y. Nambu, C.M. Yoo, Prog. Theor. Phys. 117, 229 (2007). arXiv:gr-qc/0605120

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A.E. Romano, Phys. Rev. D 75, 043509 (2007). arXiv:astro-ph/0612002

    Article  MathSciNet  ADS  Google Scholar 

  12. D.J.H. Chung, A.E. Romano, Phys. Rev. D 74, 103507 (2006). arXiv:astro-ph/0608403

    Article  ADS  Google Scholar 

  13. S. Alexander, T. Biswas, A. Notari, D. Vaid, arXiv:0712.0370 [astro-ph]

  14. H. Alnes, M. Amarzguioui, O. Gron, Phys. Rev. D 73, 083519 (2006). arXiv:astro-ph/0512006

    Article  ADS  Google Scholar 

  15. A.E. Romano, Phys. Rev. D 76, 103525 (2007). arXiv:astro-ph/0702229

    Article  ADS  Google Scholar 

  16. A.E. Romano, arXiv:0911.2927 [astro-ph.CO]

  17. A.E. Romano, arXiv:0912.2866 [astro-ph.CO]

  18. M.N. Celerier, K. Bolejko, A. Krasinski, arXiv:0906.0905 [astro-ph.CO]

  19. G. Lemaitre, Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 53, 51 (1933)

    Google Scholar 

  20. R.C. Tolman, Proc. Natl. Acad. Sci. 20, 169 (1934)

    Article  ADS  Google Scholar 

  21. H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947)

    MathSciNet  ADS  MATH  Google Scholar 

  22. G.C. Omer, Proc. Natl. Acad. Sci. 53, 1 (1965)

    Article  ADS  MATH  Google Scholar 

  23. A. Zecca, Nuovo Cimento B 106, 413 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.E. Felten, R. Isaacman, Rev. Mod. Phys. 58, 689 (1986)

    Article  ADS  Google Scholar 

  25. D. Edwards, Mon. Not. R. Astron. Soc. 159, 51 (1972)

    ADS  Google Scholar 

  26. A.E. Romano, M. Sasaki, arXiv:0905.3342 [astro-ph.CO]

  27. M.N. Celerier, Astron. Astrophys. 353, 63 (2000). arXiv:astro-ph/9907206

    ADS  Google Scholar 

  28. C. Hellaby, PoS ISFTG, 005 (2009). arXiv:0910.0350 [gr-qc]

    Google Scholar 

  29. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006). astro-ph/0610026

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008). arXiv:0807.3548 [astro-ph]

    Article  ADS  Google Scholar 

  31. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008). arXiv:0807.3548 [astro-ph]

    Article  ADS  Google Scholar 

  32. C. Zunckel, C. Clarkson, Phys. Rev. Lett. 101, 181301 (2008). arXiv:0807.4304 [astro-ph]

    Article  ADS  Google Scholar 

  33. A.A. Starobinsky, Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  34. A.A. Starobinsky, JETP Lett. 42, 152 (1985)

    ADS  Google Scholar 

  35. M. Sasaki, E.D. Stewart, Prog. Theor. Phys. 95, 71 (1996). arXiv:astro-ph/9507001

    Article  ADS  Google Scholar 

  36. N. Mustapha, C. Hellaby, Gen. Relativ. Gravit. 33, 455 (2001). astro-ph/0006083

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. D.H. Lyth, K.A. Malik, M. Sasaki, J. Cosmol. Astropart. Phys. 0505, 004 (2005). astro-ph/0411220

    Article  ADS  Google Scholar 

  38. R.A. Sussman, Class. Quantum Gravity 27, 175001 (2010). arXiv:1005.0717 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Shafieloo, V. Sahni, A.A. Starobinsky, Phys. Rev. D 80, 101301(R) (2009). arXiv:0903.5141 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AER is supported by MEXT Grant-in-Aid for the global COE program at Kyoto University, “The Next Generation of Physics, Spun from Universality and Emergence”. MS is supported in part by JSPS Grant-in-Aid for Scientific Research (A) No. 21244033, and by JSPS Grant-in-Aid for Creative Scientific Research No. 19GS0219. AS acknowledges RESCEU hospitality as a visiting professor. He was also partially supported by the grant RFBR 08-02-00923 and by the Scientific Programme “Astronomy” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Enea Romano.

Appendix: Calculating the density contrast

Appendix: Calculating the density contrast

In the text, we have carried out all our calculations in the coordinates (η,r) since this allows one to take full advantage of the existence of an analytical solution. But if we are interested in the radial profile of a quantity on a fixed time-slice t=constant, we need to go back to the coordinates (t,r). Below we carry this out for the density contrast, δ=(ρ(t,r)−ρ(t,∞))/ρ(t,∞), where our LTB model is assumed to approach a flat FLRW universe as r→∞.

We need to introduce the inverse of the function defined in Eq. (14), i.e., we need to express η as a function of (t,r), η=v(t,r), from

(A.1)

such that

$$ u\bigl(v(t,r),r\bigr)=t. $$
(A.2)

The value of v(t,r) can be evaluated numerically by solving for x the equation

$$ u(x,r)=t. $$
(A.3)

The function η=v(t 0,r) thus obtained is plotted for the different models in Figs. 4 and 13. As can be seen, η=v(t 0,r) varies substantially in the region of inhomogeneity, while it levels off to a constant far from the inhomogeneity.

Fig. 4
figure 4

η=v(t 0,r) in units of \(H_{0}^{-1}\) for inhomogeneity of types I and I+

The energy density in the coordinates (t,r) is given by

$$ \rho(t,r)=\frac{2\, \partial_rM}{R^2(t,r)\partial_r R(t,r)}. $$
(A.4)

But since the analytical solution is given in terms of η we have another expression:

$$ \rho(\eta,r)=\frac{2\, \partial_r M}{ a(\eta,r)^2 r^2 [\partial_r (a(\eta,r)r) - a^{-1}\partial_{\eta} (a(\eta,r) r) \partial_r t] }. $$
(A.5)

Then the density contrast on the hypersurface t=t 0 is given by

$$ \delta(t_0,r)=\frac{\rho(\eta(t_0,r),r) -\rho(\eta(t_0,\infty),\infty)}{\rho(\eta(t_0,\infty)),\infty )}, $$
(A.6)

where

(A.7)

The density contrast is plotted in Fig. 5 for type I± inhomogeneities and Fig. 14 for type II± inhomogeneities.

Fig. 5
figure 5

δ(t 0,r) as a function of r for inhomogeneity of types I and I+

Fig. 6
figure 6

H app(z) for inhomogeneity of types I and I+

Fig. 7
figure 7

q app(z) for inhomogeneity of types I and I+

Fig. 8
figure 8

\(w^{\mathrm{app}}_{\mathrm{DE}}(z)\) for inhomogeneity of types I and I+

Fig. 9
figure 9

Om app(z) for inhomogeneity of types I and I+

Fig. 10
figure 10

The same as Fig. 1 but for inhomogeneity of types II and II+

Fig. 11
figure 11

The same as Fig. 2 but for inhomogeneity of types II and II+

Fig. 12
figure 12

The same as Fig. 3 but for inhomogeneity of types II and II+

Fig. 13
figure 13

The same as Fig. 4 but for inhomogeneity of types II and II+

Fig. 14
figure 14

The same as Fig. 5 but for inhomogeneity of types II and II+

Fig. 15
figure 15

The same as Fig. 6 but for inhomogeneity of types II and II+

Fig. 16
figure 16

The same as Fig. 7 but for inhomogeneity of types II and II+

Fig. 17
figure 17

The same as Fig. 8 but for inhomogeneity of types II and II+

Fig. 18
figure 18

The same as Fig. 9 but for inhomogeneity of types II and II+

Fig. 19
figure 19

\(\delta D_{L}(z)=[D_{L}^{\varLambda \mathrm{CDM}}(z)-D_{L}(z)]/D^{\varLambda \mathrm{CDM}}_{L}(z)\), the relative difference between the luminosity distances, for model II+. As can be seen, the large scale inhomogeneities considered have a very small effect

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, A.E., Starobinsky, A.A. & Sasaki, M. Effects of inhomogeneities on apparent cosmological observables: “fake” evolving dark energy. Eur. Phys. J. C 72, 2242 (2012). https://doi.org/10.1140/epjc/s10052-012-2242-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2242-4

Keywords

Navigation