Skip to main content
Log in

A positive-weight next-to-leading-order Monte Carlo simulation of deep inelastic scattering and Higgs boson production via vector–boson fusion in Herwig++

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The positive weight next-to-leading-order matching formalism (POWHEG) is applied to Deep Inelastic Scattering (DIS) and the related Higgs boson production via vector–boson fusion process in the Herwig++ Monte Carlo event generator. This scheme combines parton shower simulation and next-to-leading-order calculation in a consistent way which only produces positive weight events. The simulation contains a full implementation of the truncated shower required to correctly model soft emissions in an angular-ordered parton shower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See Ref. [25] for a recent review of the older techniques [2643] and techniques for improving the simulation of multiple hard QCD radiation [4454].

  2. There has also been some work combining either many NLO matrix elements [87] or the NLO matrix elements with subsequent emissions matched to leading-order matrix elements [88, 89] with the parton shower.

  3. We write the modified PDF for a quark q, but a similar expression is valid for an incoming antiquark \(\bar{q}\).

  4. Here \(\mathcal{R}_{i}\) defines a random number in [0,1].

  5. The agreement between the results of our simulation appears poor in the lowest x bin for Q 2=1200 GeV2 when compared to that in the original experimental paper. However, after careful comparison this appears to be an effect of integrating the result over the bin rather than using the result at the central value of the bin, integrating over a smaller region we obtain \(\tilde{\sigma} = 0.79\) for this bin in much better agreement with the experimental value.

References

  1. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  3. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  4. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)

    Article  ADS  Google Scholar 

  5. D. Zeppenfeld, R. Kinnunen, A. Nikitenko, E. Richter-Was, Measuring Higgs boson couplings at the LHC. Phys. Rev. D 62, 013009 (2000). hep-ph/0002036

    Article  ADS  Google Scholar 

  6. A. Belyaev, L. Reina, \(pp\to t\bar{t} H\), Hτ + τ : toward a model independent determination of the Higgs boson couplings at the LHC. J. High Energy Phys. 08, 041 (2002). hep-ph/0205270

    Article  ADS  Google Scholar 

  7. H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions. Phys. Rev. Lett. 40, 692 (1978)

    Article  ADS  Google Scholar 

  8. D.L. Rainwater, D. Zeppenfeld, K. Hagiwara, Searching for Hτ + τ in weak boson fusion at the LHC. Phys. Rev. D 59, 014037 (1999). hep-ph/9808468

    Article  ADS  Google Scholar 

  9. T. Plehn, D.L. Rainwater, D. Zeppenfeld, A method for identifying Hτ + τ e ± μ +missing p T at the CERN LHC. Phys. Rev. D 61, 093005 (2000). hep-ph/9911385

    Article  ADS  Google Scholar 

  10. D.L. Rainwater, D. Zeppenfeld, Observing HW (∗) W (∗)e ± μ /p T in weak boson fusion with dual forward jet tagging at the CERN LHC. Phys. Rev. D 60, 113004 (1999). hep-ph/9906218

    Article  ADS  Google Scholar 

  11. N. Kauer, T. Plehn, D.L. Rainwater, D. Zeppenfeld, HWW as the discovery mode for a light Higgs boson. Phys. Lett. B 503, 113–120 (2001). hep-ph/0012351

    Article  ADS  Google Scholar 

  12. D.L. Rainwater, D. Zeppenfeld, Searching for Hγγ in weak boson fusion at the LHC. J. High Energy Phys. 12, 005 (1997). hep-ph/9712271

    Article  ADS  Google Scholar 

  13. O.J.P. Eboli, D. Zeppenfeld, Observing an invisible Higgs boson. Phys. Lett. B 495, 147–154 (2000). hep-ph/0009158

    Article  ADS  Google Scholar 

  14. D. Cavalli et al., The Higgs working group: summary report, hep-ph/0203056

  15. T. Han, S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections. Phys. Lett. B 273, 167–172 (1991)

    Article  ADS  Google Scholar 

  16. A. Djouadi, M. Spira, P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B 264, 440–446 (1991)

    Article  ADS  Google Scholar 

  17. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17–82 (1995). hep-ph/9504378

    Article  ADS  Google Scholar 

  18. S. Dawson, Radiative corrections to Higgs boson production. Nucl. Phys. B 359, 283–300 (1991)

    Article  ADS  Google Scholar 

  19. W. Giele et al., The QCD/SM working group: summary report, hep-ph/0204316

  20. S. Catani, D. de Florian, M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO. J. High Energy Phys. 05, 025 (2001). hep-ph/0102227

    Article  ADS  Google Scholar 

  21. R.V. Harlander, W.B. Kilgore, Soft and virtual corrections to ppH+X at NNLO. Phys. Rev. D 64, 013015 (2001). hep-ph/0102241

    Article  ADS  Google Scholar 

  22. R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). hep-ph/0201206

    Article  ADS  Google Scholar 

  23. C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220–256 (2002). hep-ph/0207004

    Article  ADS  Google Scholar 

  24. V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B 665, 325–366 (2003). hep-ph/0302135

    Article  ADS  Google Scholar 

  25. A. Buckley et al., General-purpose event generators for LHC physics, arXiv:1101.2599

  26. T. Sjostrand, M. Bengtsson, The Lund Monte Carlo for jet fragmentation and e+e− physics. Jetset Version 6.3: An Update. Comput. Phys. Commun. 43, 367 (1987)

    Article  ADS  Google Scholar 

  27. M. Bengtsson, T. Sjostrand, Parton showers in leptoproduction events. Z. Phys. C 37, 465 (1988)

    Article  ADS  Google Scholar 

  28. E. Norrbin, T. Sjostrand, QCD radiation off heavy particles. Nucl. Phys. B 603, 297–342 (2001). hep-ph/0010012

    Article  ADS  Google Scholar 

  29. G. Miu, T. Sjostrand, W production in an improved parton shower approach. Phys. Lett. B 449, 313–320 (1999). hep-ph/9812455

    Article  ADS  Google Scholar 

  30. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 01, 010 (2001). hep-ph/0011363

    Article  ADS  Google Scholar 

  31. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213

  32. M.H. Seymour, Photon radiation in final state parton showering. Z. Phys. C 56, 161–170 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  33. M.H. Seymour, Matrix element corrections to parton shower simulation of deep inelastic scattering, in Contributed to 27th International Conference on High Energy Physics (ICHEP), Glasgow, Scotland, 20–27 Jul. (1994)

    Google Scholar 

  34. G. Corcella, M.H. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay. Phys. Lett. B 442, 417–426 (1998). hep-ph/9809451

    Article  ADS  Google Scholar 

  35. G. Corcella, M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders. Nucl. Phys. B 565, 227–244 (2000). hep-ph/9908388

    Article  ADS  Google Scholar 

  36. M.H. Seymour, Matrix element corrections to parton shower algorithms. Comput. Phys. Commun. 90, 95–101 (1995). hep-ph/9410414

    Article  ADS  Google Scholar 

  37. M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes. Nucl. Phys. B 436, 443–460 (1995). hep-ph/9410244

    Article  ADS  Google Scholar 

  38. S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens, B. Webber, Herwig++ 1.0: an event generator for e+e annihilation. J. High Energy Phys. 02, 005 (2004). hep-ph/0311208

    Article  ADS  Google Scholar 

  39. S. Gieseke, The new Monte Carlo event generator Herwig++, hep-ph/0408034

  40. K. Hamilton, P. Richardson, A simulation of QCD radiation in top quark decays. J. High Energy Phys. 02, 069 (2007). hep-ph/0612236

    Article  ADS  Google Scholar 

  41. S. Gieseke et al., Herwig++ 2.0 release note, hep-ph/0609306

  42. M. Bahr et al., Herwig++ 2.2 release note, arXiv:0804.3053

  43. S. Gieseke, D. Grellscheid, K. Hamilton, A. Papaefstathiou, S. Platzer et al., Herwig++ 2.5 release note, arXiv:1102.1672

  44. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. J. High Energy Phys. 11, 063 (2001). hep-ph/0109231

    Article  ADS  Google Scholar 

  45. F. Krauss, Matrix elements and parton showers in hadronic interactions. J. High Energy Phys. 08, 015 (2002). hep-ph/0205283

    Article  ADS  Google Scholar 

  46. L. Lonnblad, Correcting the colour-dipole cascade model with fixed order matrix elements. J. High Energy Phys. 05, 046 (2002). hep-ph/0112284

    Article  ADS  Google Scholar 

  47. A. Schalicke, F. Krauss, Implementing the ME+PS merging algorithm. J. High Energy Phys. 07, 018 (2005). hep-ph/0503281

    Article  ADS  Google Scholar 

  48. F. Krauss, A. Schalicke, G. Soff, APACIC++ 2.0: A parton cascade in C++. Comput. Phys. Commun. 174, 876–902 (2006). hep-ph/0503087

    Article  ADS  Google Scholar 

  49. N. Lavesson, L. Lonnblad, W+ jets matrix elements and the dipole cascade. J. High Energy Phys. 07, 054 (2005). hep-ph/0503293

    Article  ADS  Google Scholar 

  50. S. Mrenna, P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA. J. High Energy Phys. 05, 040 (2004). hep-ph/0312274

    Article  ADS  Google Scholar 

  51. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 07, 001 (2003). hep-ph/0206293

    Article  ADS  Google Scholar 

  52. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569

    Article  ADS  Google Scholar 

  53. S. Hoeche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements and truncated showers. J. High Energy Phys. 05, 053 (2009). arXiv:0903.1219

    Article  ADS  Google Scholar 

  54. K. Hamilton, P. Richardson, J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers. J. High Energy Phys. 11, 038 (2009). arXiv:0905.3072

    Article  ADS  Google Scholar 

  55. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). hep-ph/0204244

    Article  ADS  Google Scholar 

  56. S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber, C.D. White, The MC@NLO 4.0 event generator, arXiv:1010.0819

  57. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. J. High Energy Phys. 03, 092 (2006). hep-ph/0512250

    Article  ADS  Google Scholar 

  58. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. J. High Energy Phys. 04, 081 (2007). hep-ph/0702198

    Article  ADS  Google Scholar 

  59. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys. 07, 029 (2008). arXiv:0805.3067

    Article  ADS  Google Scholar 

  60. O. Latunde-Dada, Herwig++ Monte Carlo at next-to-leading order for e+e− annihilation and lepton pair production. J. High Energy Phys. 11, 040 (2007). arXiv:0708.4390

    Article  ADS  Google Scholar 

  61. O. Latunde-Dada, MC@NLO for the hadronic decay of Higgs bosons in associated production with vector bosons. J. High Energy Phys. 05, 112 (2009). arXiv:0903.4135

    Article  ADS  Google Scholar 

  62. A. Papaefstathiou, O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods. J. High Energy Phys. 07, 044 (2009). arXiv:0901.3685

    Article  ADS  Google Scholar 

  63. P. Torrielli, S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO. J. High Energy Phys. 1004, 110 (2010). arXiv:1002.4293

    Article  ADS  Google Scholar 

  64. S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber, NLO QCD corrections in Herwig++ with MC@NLO. J. High Energy Phys. 1101, 053 (2011). arXiv:1010.0568

    Article  ADS  Google Scholar 

  65. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 11, 040 (2004). hep-ph/0409146

    Article  ADS  Google Scholar 

  66. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 11, 070 (2007). arXiv:0709.2092

    Article  ADS  Google Scholar 

  67. P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction. J. High Energy Phys. 08, 077 (2006). hep-ph/0606275

    Article  ADS  Google Scholar 

  68. S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. J. High Energy Phys. 09, 126 (2007). arXiv:0707.3088

    Article  ADS  Google Scholar 

  69. O. Latunde-Dada, S. Gieseke, B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons. J. High Energy Phys. 02, 051 (2007). hep-ph/0612281

    Article  ADS  Google Scholar 

  70. S. Alioli, P. Nason, C. Oleari, E. Re, NLO vector–boson production matched with shower in POWHEG. J. High Energy Phys. 07, 060 (2008). arXiv:0805.4802

    Article  ADS  Google Scholar 

  71. K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell–Yan vector boson production, arXiv:0806.0290

  72. S. Alioli, P. Nason, C. Oleari, E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG. J. High Energy Phys. 04, 002 (2009). arXiv:0812.0578

    Article  ADS  Google Scholar 

  73. K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production. J. High Energy Phys. 04, 116 (2009). arXiv:0903.4345

    Article  ADS  Google Scholar 

  74. S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. J. High Energy Phys. 09, 111 (2009). arXiv:0907.4076

    Article  ADS  Google Scholar 

  75. P. Nason, C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, arXiv:0911.5299

  76. S. Hoche, F. Krauss, M. Schonherr, F. Siegert, Automating the POWHEG method in Sherpa. J. High Energy Phys. 1104, 024 (2011). arXiv:1008.5399

    Article  ADS  Google Scholar 

  77. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 1006, 043 (2010). arXiv:1002.2581

    Article  ADS  Google Scholar 

  78. E. Re, Single-top production with the POWHEG method. PoS DIS2010, 172 (2010). arXiv:1007.0498

    Google Scholar 

  79. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71, 1547 (2011). arXiv:1009.2450

    Article  ADS  Google Scholar 

  80. S. Alioli, P. Nason, C. Oleari, E. Re, Vector boson plus one jet production in POWHEG. J. High Energy Phys. 1101, 095 (2011). arXiv:1009.5594

    Article  ADS  Google Scholar 

  81. S. Alioli, K. Hamilton, P. Nason, C. Oleari, E. Re, Jet pair production in POWHEG. J. High Energy Phys. 1104, 081 (2011). arXiv:1012.3380

    Article  ADS  Google Scholar 

  82. K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production. J. High Energy Phys. 01, 009 (2011). arXiv:1009.5391

    Article  ADS  Google Scholar 

  83. C. Oleari, The POWHEG-BOX. Nucl. Phys., Proc. Suppl. 205–206, 36–41 (2010). arXiv:1007.3893

    Article  Google Scholar 

  84. C. Oleari, L. Reina, W b bbar production in POWHEG, arXiv:1105.4488

  85. A. Kardos, C. Papadopoulos, Z. Trocsanyi, Top quark pair production in association with a jet with NLO parton showering, arXiv:1101.2672

  86. T. Melia, P. Nason, R. Rontsch, G. Zanderighi, W + W + plus dijet production in the POWHEGBOX. Eur. Phys. J. C 71, 1670 (2011). arXiv:1102.4846

    Article  ADS  Google Scholar 

  87. N. Lavesson, L. Lonnblad, Extending CKKW-merging to one-loop matrix elements. J. High Energy Phys. 12, 070 (2008). arXiv:0811.2912

    Article  ADS  Google Scholar 

  88. K. Hamilton, P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements. J. High Energy Phys. 06, 039 (2010). arXiv:1004.1764

    Article  ADS  Google Scholar 

  89. S. Hoche, F. Krauss, M. Schonherr, F. Siegert, NLO matrix elements and truncated showers, arXiv:1009.1127

  90. M. Bahr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883

    Article  ADS  Google Scholar 

  91. T. Figy, C. Oleari, D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion. Phys. Rev. D 68, 073005 (2003). hep-ph/0306109

    Article  ADS  Google Scholar 

  92. R. Kleiss, From two to three jets in heavy boson decays: an algorithmic approach. Phys. Lett. B 180, 400 (1986)

    Article  ADS  Google Scholar 

  93. P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu, Multiple bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics. Nucl. Phys. B 206, 53 (1982)

    Article  ADS  Google Scholar 

  94. S. Catani, M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997). hep-ph/9605323

    Article  ADS  Google Scholar 

  95. L. Lönnblad, ThePEG, PYTHIA7, Herwig++ and ARIADNE. Nucl. Instrum. Methods A 559, 246–248 (2006)

    Article  ADS  Google Scholar 

  96. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). hep-ph/0603175

    Article  ADS  Google Scholar 

  97. S. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. J. High Energy Phys. 12, 045 (2003). hep-ph/0310083

    Article  ADS  Google Scholar 

  98. ZEUS Collaboration, S. Chekanov et al., High-Q 2 neutral current cross sections in e + p deep inelastic scattering at \(\sqrt{s}=318\) GeV. Phys. Rev. D 70, 052001 (2004). hep-ex/0401003

    Article  ADS  Google Scholar 

  99. ZEUS Collaboration, S. Chekanov et al., Measurement of high-Q 2 e p neutral current cross sections at HERA and the extraction of xF 3. Eur. Phys. J. C 28, 175 (2003). hep-ex/0208040

    Article  ADS  Google Scholar 

  100. S. Catani, M.H. Seymour, NLO QCD calculations in DIS at HERA based on the dipole formalism, hep-ph/9609521

  101. ZEUS Collaboration, S. Chekanov et al., A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering. Phys. Rev. D 67, 012007 (2003). hep-ex/0208023

    Article  ADS  Google Scholar 

  102. H1 Collaboration, C. Adloff et al., Measurements of transverse energy flow in deep inelastic-scattering at HERA. Eur. Phys. J. C 12, 595–607 (2000). hep-ex/9907027

    Article  ADS  Google Scholar 

  103. G. Marchesini, B.R. Webber, Simulation of QCD jets including soft gluon interference. Nucl. Phys. B 238, 1 (1984)

    Article  ADS  Google Scholar 

  104. G. Marchesini, B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988).

    Article  ADS  Google Scholar 

  105. M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B 641, 57–61 (2006). hep-ph/0512210

    Article  ADS  Google Scholar 

  106. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). hep-ph/0201195

    Article  ADS  Google Scholar 

  107. W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. Acta Phys. Pol. B 33, 2933–2938 (2002). hep-ph/0206114

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca D’Errico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Errico, L., Richardson, P. A positive-weight next-to-leading-order Monte Carlo simulation of deep inelastic scattering and Higgs boson production via vector–boson fusion in Herwig++. Eur. Phys. J. C 72, 2042 (2012). https://doi.org/10.1140/epjc/s10052-012-2042-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2042-x

Keywords

Navigation