Skip to main content
Log in

SUSY background to neutral MSSM Higgs boson searches

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2013

Abstract

Within the Minimal Supersymmetric Standard Model (MSSM) the production and decay of superpartners can give rise to backgrounds for Higgs boson searches. Here MSSM background processes to the vector boson fusion channel with the Higgs boson decaying into two tau leptons or two W-bosons are investigated, giving rise to dilepton plus missing transverse momentum signals of the Higgs boson. Starting from a scenario with relatively small masses of the supersymmetric (SUSY) particles, with concomitant large cross section of the background processes, one obtains a first conservative estimate of the background. Light chargino pair production plus two jets, lightest and next-to-lightest neutralino production plus two jets as well as slepton pair production plus two jets are identified as important contributions to the irreducible SUSY background. Light chargino and next-to-lightest neutralino production plus two jets and next-to-lightest neutralino pair production plus two jets give rise to reducible backgrounds, which can be larger than the irreducible ones in some scenarios. The relevant distributions are shown and additional cuts for MSSM background reduction are discussed. Extrapolation to larger squark masses is performed and shows that MSSM backgrounds are quite small for squark masses at the current exclusion limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Bayatian et al. (CMS Collaboration), J. Phys. G, Nucl. Part. Phys. 34, 995–1579 (2007)

    Article  ADS  Google Scholar 

  2. G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512 [hep-ex]

  3. T. Plehn, D.L. Rainwater, D. Zeppenfeld, Phys. Lett. B 454, 297–303 (1999). arXiv:hep-ph/9902434

    Article  ADS  Google Scholar 

  4. A. Datta, A. Djouadi, M. Guchait, F. Moortgat, Nucl. Phys. B 681, 31–64 (2004). arXiv:hep-ph/0303095

    Article  ADS  Google Scholar 

  5. M. Consonni, Nucl. Phys. B, Proc. Suppl. 177–178, 271–272 (2008)

    Article  Google Scholar 

  6. H. Baer, V. Barger, G. Shaughnessy, Phys. Rev. D, Part. Fields 78, 095009 (2008). arXiv:0806.3745 [hep-ph]

    Article  ADS  Google Scholar 

  7. ATLAS Collaboration, Phys. Lett. B 705, 174–192 (2011). arXiv:1107.5003 [hep-ex]

    Article  ADS  Google Scholar 

  8. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 231801 (2011). arXiv:1104.1619 [hep-ex]

    Article  ADS  Google Scholar 

  9. CMS Collaboration, CMS-PAS-HIG-11-009 (2011)

  10. M. Duhrssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld, Phys. Rev. D, Part. Fields 70, 113009 (2004). arXiv:hep-ph/0406323

    Article  ADS  Google Scholar 

  11. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 701, 186–203 (2011). arXiv:1102.5290 [hep-ex]

    Article  ADS  Google Scholar 

  12. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 71, 1682 (2011). arXiv:1103.6214 [hep-ex]

    Article  ADS  Google Scholar 

  13. I. Vivarelli (ATLAS Collaboration), talk given at EPS HEP 2011, Grenoble, France

  14. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1106, 026 (2011). arXiv:1103.1348 [hep-ex]

    Article  ADS  Google Scholar 

  15. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1108, 155 (2011). arXiv:1106.4503 [hep-ex]

    Article  ADS  Google Scholar 

  16. CMS Collaboration, CMS-PAS-SUS-11-003 (2011)

  17. T. Han, G. Valencia, S. Willenbrock, Phys. Rev. Lett. 69, 3274–3277 (1992). arXiv:hep-ph/9206246

    Article  ADS  Google Scholar 

  18. M. Spira, Fortschr. Phys. 46, 203–284 (1998). arXiv:hep-ph/9705337

    Article  MATH  Google Scholar 

  19. T. Figy, C. Oleari, D. Zeppenfeld, Phys. Rev. D, Part. Fields 68, 073005 (2003). arXiv:hep-ph/0306109

    Article  ADS  Google Scholar 

  20. E.L. Berger, J.M. Campbell, Phys. Rev. D, Part. Fields 70, 073011 (2004). arXiv:hep-ph/0403194

    Article  ADS  Google Scholar 

  21. M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. Lett. 99, 161803 (2007). arXiv:0707.0381 [hep-ph]

    Article  ADS  Google Scholar 

  22. M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D, Part. Fields 77, 013002 (2008). arXiv:0710.4749 [hep-ph]

    Article  ADS  Google Scholar 

  23. T. Figy, S. Palmer, G. Weiglein, J. High Energy Phys. 1202, 105 (2012). arXiv:1012.4789 [hep-ph]

    Article  ADS  Google Scholar 

  24. R.V. Harlander, J. Vollinga, M.M. Weber, Phys. Rev. D, Part. Fields 77, 053010 (2008). arXiv:0801.3355 [hep-ph]

    Article  ADS  Google Scholar 

  25. A. Bredenstein, K. Hagiwara, B. Jager, Phys. Rev. D, Part. Fields 77, 073004 (2008). arXiv:0801.4231 [hep-ph]

    Article  ADS  Google Scholar 

  26. J. Andersen, T. Binoth, G. Heinrich, J. Smillie, J. High Energy Phys. 0802, 057 (2008). arXiv:0709.3513 [hep-ph]

    Article  ADS  Google Scholar 

  27. P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Phys. Rev. Lett. 105, 011801 (2010). arXiv:1003.4451 [hep-ph]

    Article  ADS  Google Scholar 

  28. A. Djouadi, M. Spira, Phys. Rev. D, Part. Fields 62, 014004 (2000). arXiv:hep-ph/9912476

    Article  ADS  Google Scholar 

  29. W. Hollik, T. Plehn, M. Rauch, H. Rzehak, Phys. Rev. Lett. 102, 091802 (2009). arXiv:0804.2676 [hep-ph]

    Article  ADS  Google Scholar 

  30. B.C. Allanach et al., Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233

    Article  ADS  Google Scholar 

  31. M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, arXiv:hep-ph/9912223

  32. D.L. Rainwater, D. Zeppenfeld, K. Hagiwara, Phys. Rev. D, Part. Fields 59, 014037 (1998). arXiv:hep-ph/9808468

    Article  ADS  Google Scholar 

  33. N. Kauer, T. Plehn, D.L. Rainwater, D. Zeppenfeld, Phys. Lett. B 503, 113–120 (2001). arXiv:hep-ph/0012351

    Article  ADS  Google Scholar 

  34. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635–644 (2007). arXiv:hep-ph/0609292

    ADS  Google Scholar 

  35. M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  36. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  37. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  38. W. Porod, Comput. Phys. Commun. 153, 275–315 (2003). arXiv:hep-ph/0301101

    Article  ADS  Google Scholar 

  39. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  40. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  41. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  42. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  43. P.Z. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  44. B.C. Allanach et al., Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  45. E. Brubaker et al. (Tevatron Electroweak Working Group, CDF and D0 Collaboration), arXiv:hep-ex/0603039

  46. J. Alwall et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph]

    Article  ADS  Google Scholar 

  47. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph]

    Article  ADS  Google Scholar 

  48. J. Pumplin et al., J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  49. W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011). arXiv:0708.4233 [hep-ph]

    Article  ADS  Google Scholar 

  50. M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195 [hep-ph]

  51. W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492, 51–103 (1997). arXiv:hep-ph/9610490 [hep-ph]

    ADS  Google Scholar 

  52. W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira et al., Phys. Rev. Lett. 83, 3780–3783 (1999). arXiv:hep-ph/9906298 [hep-ph]

    Article  ADS  Google Scholar 

  53. M. Bahr et al., Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883 [hep-ph]

    Article  ADS  Google Scholar 

  54. J. Alwall et al., Comput. Phys. Commun. 176, 300–304 (2007). arXiv:hep-ph/0609017

    Article  ADS  Google Scholar 

  55. P. Richardson, J. High Energy Phys. 0111, 029 (2001). arXiv:hep-ph/0110108

    Article  ADS  Google Scholar 

  56. K. Arnold et al., Comput. Phys. Commun. 180, 1661–1670 (2009). arXiv:0811.4559 [hep-ph]

    Article  ADS  Google Scholar 

  57. K. Arnold et al., arXiv:1107.4038 [hep-ph]

  58. D.W. Miller (ATLAS Collaboration), ATL-PHYS-PROC-2010-049 (2010)

  59. G. Aad et al. (ATLAS Collaboration), New J. Phys. 13, 053033 (2011). arXiv:1012.5104 [hep-ex]

    Article  ADS  Google Scholar 

  60. D.L. Rainwater, D. Zeppenfeld, Phys. Rev. D, Part. Fields 60, 113004 (1999). arXiv:hep-ph/9906218

    Article  ADS  Google Scholar 

  61. R.K. Ellis, I. Hinchliffe, M. Soldate, J.J.V.D. Bij, Nucl. Phys. B 297, 221–243 (1988)

    Article  ADS  Google Scholar 

  62. D.L. Rainwater, R. Szalapski, D. Zeppenfeld, Phys. Rev. D, Part. Fields 54, 6680–6689 (1996). arXiv:hep-ph/9605444

    Article  ADS  Google Scholar 

  63. D.L. Rainwater, D. Summers, D. Zeppenfeld, Phys. Rev. D, Part. Fields 55, 5681–5684 (1997). arXiv:hep-ph/9612320

    Article  ADS  Google Scholar 

  64. CMS Collaboration, CMS-PAS-BTV-09-001 (2009)

  65. CMS Collaboration, CMS-PAS-BTV-10-001 (2010)

  66. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

    Article  ADS  Google Scholar 

  67. ATLAS Collaboration, ATLAS-CONF-2011-163 (2011)

  68. CMS Collaboration, CMS-PAS-HIG-11-032 (2011)

  69. D. Binosi, L. Theussl, Comput. Phys. Commun. 161, 76–86 (2004). arXiv:hep-ph/0309015

    Article  ADS  Google Scholar 

  70. D. Binosi, J. Collins, C. Kaufhold, L. Theussl, Comput. Phys. Commun. 180, 1709–1715 (2009). arXiv:0811.4113 [hep-ph]

    Article  ADS  Google Scholar 

  71. J.A.M. Vermaseren, Comput. Phys. Commun. 83, 45–58 (1994)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Feigl.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjc/s10052-013-2564-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigl, B., Rzehak, H. & Zeppenfeld, D. SUSY background to neutral MSSM Higgs boson searches. Eur. Phys. J. C 72, 1903 (2012). https://doi.org/10.1140/epjc/s10052-012-1903-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1903-7

Keywords

Navigation