Skip to main content
Log in

Meson screening masses from lattice QCD with two light quarks and one strange quark

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents N τ =4, 6 and 8 and aspect ratios of N s /N τ ≥4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3T c (T c being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2πT from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2πT. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4T c . Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3T c , indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. DeTar, J.B. Kogut, Phys. Rev. Lett. 59, 399 (1987)

    Article  ADS  Google Scholar 

  2. C. DeTar, J.B. Kogut, Phys. Rev. D 36, 2828 (1987)

    Article  ADS  Google Scholar 

  3. E.V. Shuryak, Comments Nucl. Phys. 21, 235 (1994)

    Google Scholar 

  4. S.H. Lee, T. Hatsuda, Phys. Rev. D 54, 1871 (1996)

    Article  ADS  Google Scholar 

  5. N. Evans, S.D.H. Hsu, M. Schwetz, Phys. Lett. B 375, 262 (1996)

    Article  ADS  Google Scholar 

  6. M.C. Birse, T.D. Cohen, J.A. McGovern, Phys. Lett. B 388, 137 (1996)

    Article  ADS  Google Scholar 

  7. M.C. Birse, T.D. Cohen, J.A. McGovern, Phys. Lett. B 399, 263 (1997)

    Article  ADS  Google Scholar 

  8. J.B. Kogut, J.F. Lagaë, D.K. Sinclair, Phys. Rev. D 58, 054504 (1998)

    Article  ADS  Google Scholar 

  9. G.V. Dunne, A. Kovner, Phys. Rev. D 82, 065014 (2010)

    Article  ADS  Google Scholar 

  10. T. Appelquist, R.D. Pisarski, Phys. Rev. D 23, 2305 (1981)

    Article  ADS  Google Scholar 

  11. R. Gavai, S. Gupta, Phys. Rev. Lett. 85, 2068 (2000)

    Article  ADS  Google Scholar 

  12. M. Cheng et al., Phys. Rev. D 78, 034506 (2008)

    Article  ADS  Google Scholar 

  13. M. Laine, Y. Schröder, J. High Energy Phys. 03, 067 (2005)

    Article  ADS  Google Scholar 

  14. M. Laine, Y. Schröder, PoS LAT2005, 180 (2006)

    Google Scholar 

  15. W. Florkowski, B. Friman, Z. Phys. A 347, 271 (1994)

    Article  ADS  Google Scholar 

  16. M. Laine, M. Vepsäläinen, J. High Energy Phys. 02, 004 (2004)

    Article  ADS  Google Scholar 

  17. W.M. Alberico, A. Beraudo, A. Czerska, P. Czerski, A. Molinari, Nucl. Phys. A 792, 152 (2007)

    Article  ADS  Google Scholar 

  18. F. Karsch, E. Laermann, in Quark Gluon Plasma 3, ed. by R. Hwa, H.N. Wang (World Scientific, Singapore, 2004), arXiv:hep-lat/0305025

    Google Scholar 

  19. R. Gavai, S. Gupta, Phys. Rev. D 67, 034501 (2003)

    Article  ADS  Google Scholar 

  20. S. Wissel et al., PoS LAT2005, 164 (2006)

    Google Scholar 

  21. E. Laermann, PoS LAT2008, 193 (2008)

    Google Scholar 

  22. R. Gavai, S. Gupta, R. Lacaze, Phys. Rev. D 78, 014502 (2008)

    Article  ADS  Google Scholar 

  23. U.M. Heller, F. Karsch, B. Sturm, Phys. Rev. D 60, 114502 (1999)

    Article  ADS  Google Scholar 

  24. S. Mukherjee, PoS LAT2007, 210 (2007)

    Google Scholar 

  25. S. Mukherjee, Nucl. Phys. A 820, 283c (2009)

    Article  ADS  Google Scholar 

  26. S. Mukherjee, PoS Confinement 8, 116 (2009)

    Google Scholar 

  27. H. Kluberg-Stern et al., Nucl. Phys. B 220, 447 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.F.L. Golterman, Nucl. Phys. B 273, 663 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Altmeyer et al., Nucl. Phys. B 389, 445 (1993)

    Article  ADS  Google Scholar 

  30. S. Gupta, Phys. Rev. D 60, 094505 (1999)

    Article  ADS  Google Scholar 

  31. I. Horváth, A.D. Kennedy, S. Sint, Nucl. Phys. Proc. Suppl. 73, 834 (1999)

    Article  MATH  ADS  Google Scholar 

  32. M.A. Clark, A.D. Kennedy, Z. Sroczynski, Nucl. Phys. Proc. Suppl. 140, 835 (2005)

    Article  ADS  Google Scholar 

  33. M.A. Clark, A.D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007)

    Article  ADS  Google Scholar 

  34. M. Cheng et al., Phys. Rev. D 77, 014511 (2008)

    Article  ADS  Google Scholar 

  35. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009)

    Article  ADS  Google Scholar 

  36. R. Sommer, Nucl. Phys. B 411, 839 (1994)

    Article  ADS  Google Scholar 

  37. A. Gray et al., Phys. Rev. D 72, 094507 (2005)

    Article  ADS  Google Scholar 

  38. C. Bernard et al., Phys. Rev. D 76, 094504 (2007)

    Article  ADS  Google Scholar 

  39. R.D. Pisarski, F. Wilczek, Phys. Rev. D 29, 338 (1984)

    Article  ADS  Google Scholar 

  40. F. Basile, A. Pelissetto, E. Vicari, PoS LAT2005, 199 (2006)

    Google Scholar 

  41. S. Chandrasekharan, A.C. Mehta, Phys. Rev. Lett. 99, 142004 (2007)

    Article  ADS  Google Scholar 

  42. M. D’Elia, A.D. Giacomo, C. Pica, Phys. Rev. D 72, 114510 (2005)

    Article  ADS  Google Scholar 

  43. K. Petrov, PoS LAT2007, 217 (2007)

    Google Scholar 

  44. O. Kaczmarek, PoS CPOD07, 048 (2007)

    Google Scholar 

  45. V. Koch et al., Phys. Rev. D 46, 3169 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M., Datta, S., Francis, A. et al. Meson screening masses from lattice QCD with two light quarks and one strange quark. Eur. Phys. J. C 71, 1564 (2011). https://doi.org/10.1140/epjc/s10052-011-1564-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1564-y

Keywords

Navigation