Skip to main content
Log in

Suppression of forward dilepton production from an anisotropic quark–gluon plasma

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the rapidity dependence of leading-order medium dilepton yields resulting from a quark–gluon plasma which has a local time-dependent anisotropy in momentum space. We present a phenomenological model which includes the temporal evolution of the plasma anisotropy parameter, ξ, and the hard momentum scale, p hard. Our model interpolates between a 1+1 dimensional collisionally broadened expansion at early times and a 1+1 dimensional ideal hydrodynamic expansion at late times. Using our model, we find that at LHC energies, forward high-energy medium dilepton production would be suppressed by a factor of up to 3 if one assumes an isotropization/thermalization time of 2 fm/c. Therefore, it may be possible to use forward dilepton yields to experimentally determine the time of the onset of locally isotropic hydrodynamic expansion of the quark–gluon plasma as produced in ultrarelativistic heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503 (2001)

  2. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002)

    Article  ADS  Google Scholar 

  3. M.J. Tannenbaum, Rep. Prog. Phys. 69, 2005 (2006)

    Article  ADS  Google Scholar 

  4. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008)

    Article  ADS  Google Scholar 

  5. P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003)

    Article  ADS  Google Scholar 

  6. S. Mrowczynski, M.H. Thoma, Phys. Rev. D 62, 036011 (2000)

    Article  ADS  Google Scholar 

  7. P. Arnold, J. Lenaghan, G.D. Moore, J. High Energy Phys. 0308, 002 (2003)

    Article  ADS  Google Scholar 

  8. P. Romatschke, M. Strickland, Phys. Rev. D 70, 116006 (2004)

    Article  ADS  Google Scholar 

  9. A. Rebhan, M. Strickland, M. Attems, Phys. Rev. D 78, 045023 (2008)

    Article  ADS  Google Scholar 

  10. M. Martinez, M. Strickland, Phys. Rev. Lett. 100, 102301 (2008)

    Article  ADS  Google Scholar 

  11. M. Martinez, M. Strickland, J. Phys. G 35, 104162 (2008)

    Article  ADS  Google Scholar 

  12. M. Martinez, M. Strickland, Phys. Rev. C 78, 034917 (2008)

    Article  ADS  Google Scholar 

  13. R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502, 51 (2001)

    Article  ADS  Google Scholar 

  14. J.I. Kapusta, L.D. McLerran, D. Srivastava, Phys. Lett. B 283, 145 (1992)

    Article  ADS  Google Scholar 

  15. A. Dumitru, D.H. Rischke, T. Schonfeld, L. Winckelmann, H. Stoecker, W. Greiner, Phys. Rev. Lett. 70, 2860 (1993)

    Article  ADS  Google Scholar 

  16. M. Strickland, Phys. Lett. B 331, 245 (1994)

    Article  ADS  Google Scholar 

  17. D. Bodeker, J. High Energy Phys. 0510, 092 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Arnold, G.D. Moore, Phys. Rev. D 73, 025013 (2006)

    Article  ADS  Google Scholar 

  19. P. Arnold, G.D. Moore, Phys. Rev. D 76, 045009 (2007)

    Article  ADS  Google Scholar 

  20. B. Schenke, M. Strickland, C. Greiner, M.H. Thoma, Phys. Rev. D 73, 125004 (2006)

    Article  ADS  Google Scholar 

  21. T. Renk, Phys. Rev. C 70, 021903 (2004)

    Article  ADS  Google Scholar 

  22. T. Hirano, Y. Nara, Nucl. Phys. A 743, 305 (2004)

    Article  ADS  Google Scholar 

  23. T. Hirano, Phys. Rev. C 65, 011901 (2002)

    Article  ADS  Google Scholar 

  24. K. Morita, S. Muroya, C. Nonaka, T. Hirano, Phys. Rev. C 66, 054904 (2002)

    Article  ADS  Google Scholar 

  25. I.G. Bearden et al. (BRAHMS Collaboration), Phys. Rev. Lett. 94, 162301 (2005)

    Article  ADS  Google Scholar 

  26. I.C. Park et al. (PHOBOS Collaboration), Nucl. Phys. A 698, 564 (2002)

    Article  ADS  Google Scholar 

  27. B.B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 74, 021901 (2006)

    Article  ADS  Google Scholar 

  28. G.I. Veres et al. (PHOBOS Collaboration). arXiv:0806.2803 [nucl-ex]

  29. M. Bleicher. arXiv:hep-ph/0509314

  30. A. Dumitru, U. Katscher, J.A. Maruhn, H. Stoecker, W. Greiner, D.H. Rischke, Z. Phys. A 353, 187 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, M., Strickland, M. Suppression of forward dilepton production from an anisotropic quark–gluon plasma. Eur. Phys. J. C 61, 905–913 (2009). https://doi.org/10.1140/epjc/s10052-008-0851-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0851-8

Keywords

Navigation