Skip to main content
Log in

Electron-phonon correlations on spin texture of gapped helical Dirac fermions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The metallic surface states of a topological insulator support helical Dirac fermions protected by topology with their spin locked perpendicular to their momentum. They can acquire mass through magnetic doping or through hybridization of states on opposite faces of a thin sample. In this case there can be a component of electron spin oriented perpendicular to the surface plane. The electron-phonon interaction renormalizes the dynamics of the charge carriers through their spectral density. It also modifies the gap channel and a second spectral function enters which, not only determines the out of plane spin component, but also comes into in plane properties. While the out of plane spin component is decreased below the Fermi momentum (k F ), the in plane component increases. There are also correlation tails extending well beyond k F . The angular resolved photo-emission line shapes aquire Holstein side bands. The effective gap in the density of states is reduced and the optical conductivity aquires distinct measurable phonon structure even for modest value of the electron-phonon coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. J. Moore, Nature 464, 194 (2010)

    Article  ADS  Google Scholar 

  4. D. Hsieh et al., Nature 452, 970 (2008)

    Article  ADS  Google Scholar 

  5. Y.L. Chen et al., Science 325, 178 (2009)

    Article  ADS  Google Scholar 

  6. D. Hsieh et al., Nature 460, 1101 (2009)

    Article  ADS  Google Scholar 

  7. C. Jozwiak et al., Phys. Rev. B 84, 165113 (2011)

    Article  ADS  Google Scholar 

  8. S.-Y. Xu et al., Science 332, 560 (2011)

    Article  ADS  Google Scholar 

  9. Y.L. Chen et al., Science 329, 659 (2010)

    Article  ADS  Google Scholar 

  10. H.-Z. Lu et al., Phys. Rev. B 81, 115407 (2010)

    Article  ADS  Google Scholar 

  11. J. Linder, T. Yokoyama, A. Sudbø, Phys. Rev. B 80, 205401 (2009)

    Article  ADS  Google Scholar 

  12. K.F. Mak, C. Lee, J. Hone, J. Sham, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  13. A. Splendiani et al., Nano Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  14. C. Lee et al., ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  15. W. Feng, Y. Yao, W. Zhu, J. Zhou, W. Yao, D. Xiao, Phys. Rev. B 86, 165108 (2012)

    Article  ADS  Google Scholar 

  16. Z. Li, J.P. Carbotte, Phys. Rev. B 86, 205425 (2012)

    Article  ADS  Google Scholar 

  17. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  18. P. De Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G. Lay, Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  19. L. Stille, C.J. Tabert, E.J. Nicol, Phys. Rev. B 86, 195405 (2012)

    Article  ADS  Google Scholar 

  20. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013)

    Article  ADS  Google Scholar 

  21. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  22. J.P. Carbotte, E.J. Nicol, S.G. Sharapov, Phys. Rev. B 81, 045419 (2010)

    Article  ADS  Google Scholar 

  23. Z. Li, J.P. Carbotte, Phys. Rev. B 88, 195133 (2013)

    Article  ADS  Google Scholar 

  24. Z. Li, J.P. Carbotte, Phys. Rev. B 88, 045417 (2013)

    Article  ADS  Google Scholar 

  25. Z. Li, J.P. Carbotte, Physica B 421, 97 (2013)

    Article  ADS  Google Scholar 

  26. T. Stauber, N.M.R. Peres, J. Phys.: Condens. Matter 20, 055002 (2008)

    ADS  Google Scholar 

  27. A. Pound, J.P. Carbotte, E.J. Nicol, Phys. Rev. B 85, 125422 (2012)

    Article  ADS  Google Scholar 

  28. I. Garate, Phys. Rev. Lett. 110, 046402 (2013)

    Article  ADS  Google Scholar 

  29. J.P.F. Leblanc, J. Hwang, J.P. Carbotte, Phys. Rev. B 85, 115126 (2012)

    Article  ADS  Google Scholar 

  30. J.P.F. Leblanc, J.P. Carbotte, E.J. Nicol, Phys. Rev. B 84, 165448 (2011)

    Article  ADS  Google Scholar 

  31. A. Pound, J.P. Carbotte, E.J. Nicol, Phys. Rev. B 84, 085125 (2011)

    Article  ADS  Google Scholar 

  32. D.L. Miller et al., Science 324, 924 (2009)

    Article  ADS  Google Scholar 

  33. G. Li, A. Luican, E.Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009)

    Article  ADS  Google Scholar 

  34. E.J. Nicol, J.P. Carbotte, Phys. Rev. B 80, 081415 (2009)

    Article  ADS  Google Scholar 

  35. S.Y. Zhou et al., Phys. Rev. B 78, 193404 (2008)

    Article  ADS  Google Scholar 

  36. A. Pound, J.P. Carbotte, E.J. Nicol, Europhys. Lett. 94, 57006 (2011)

    Article  ADS  Google Scholar 

  37. Z. Li et al., Nat. Phys. 4, 532 (2008)

    Article  Google Scholar 

  38. J.P. Carbotte, J.P.F. Leblanc, P.E.C. Ashby, Phys. Rev. B 87, 045405 (2013)

    Article  ADS  Google Scholar 

  39. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 96, 256802 (2006)

    Article  ADS  Google Scholar 

  40. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, New J. Phys. 11, 095013 (2009)

    Article  ADS  Google Scholar 

  41. R.C. Hatch et al. Phys. Rev. B 83, 241303 (2011)

    Article  ADS  Google Scholar 

  42. X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F.C. Chou, C. Chamon, M. El-Batanouny, Phys. Rev. Lett. 107, 186102 (2011)

    Article  ADS  Google Scholar 

  43. X. Zhu, L. Santos, C. Howard, R. Sankar, F.C. Chou, C. Chamon, M. El-Batanouny, Phys. Rev. Lett. 108, 185501 (2012)

    Article  ADS  Google Scholar 

  44. Z.-H. Pan, A.V. Fedorov, D. Gardner, Y.S. Lee, S. Chu, T. Valla, Phys. Rev. Lett. 108, 187001 (2012)

    Article  ADS  Google Scholar 

  45. C. Chen et al., Sci. Rep. 3, 2411 (2013)

    ADS  Google Scholar 

  46. A.D. LaForge, A. Frenzel, B.C. Pursley, T. Lin, X. Liu, J. Shi, D.N. Basov, Phys. Rev. B 81, 125120 (2010)

    Article  ADS  Google Scholar 

  47. S. Giraud, A. Kundu, R. Egger, Phys. Rev. B 85, 035441 (2012)

    Article  ADS  Google Scholar 

  48. S. Giraud, R. Egger, Phys. Rev. B 83, 245322 (2011)

    Article  ADS  Google Scholar 

  49. J.A. Sobota et al., Phys. Rev. Lett. 113, 157401 (2014)

    Article  ADS  Google Scholar 

  50. S. Ulstrup et al., arXiv:1502.01933 (2015)

  51. M.V. Costache, I. Neumann, J.F. Sierra, V. Marinova, M.M. Gospodinov, S. Roche, S.O. Valenzuela, Phys. Rev. Lett. 112, 086601 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Carbotte, J.P. Electron-phonon correlations on spin texture of gapped helical Dirac fermions. Eur. Phys. J. B 88, 87 (2015). https://doi.org/10.1140/epjb/e2015-60010-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60010-1

Keywords

Navigation