Skip to main content
Log in

Advanced finite-temperature Lanczos method for anisotropic spin systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is virtually impossible to evaluate the magnetic properties of large anisotropic magnetic molecules numerically exactly due to the huge Hilbert space dimensions as well as due to the absence of symmetries. Here we propose to advance the finite-temperature Lanczos method (FTLM) to the case of single-ion anisotropy. The main obstacle, namely the loss of the spin rotational symmetry about the field axis, can be overcome by choosing symmetry related random vectors for the approximate evaluation of the partition function. We demonstrate that now thermodynamic functions for anisotropic magnetic molecules of unprecedented size can be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Mesoscopic Physics and Nanotechnology (Oxford University Press, Oxford, 2006)

  2. T. Lis, Acta Crystallogr. B 36, 2042 (1980)

    Article  Google Scholar 

  3. R. Sessoli et al., J. Am. Chem. Soc. 115, 1804 (1993)

    Article  Google Scholar 

  4. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365, 141 (1993)

    Article  ADS  Google Scholar 

  5. L. Thomas et al., Nature 383, 145 (1996)

    Article  ADS  Google Scholar 

  6. A. Gomes et al., Phys. Rev. B 57, 5021 (1998)

    Article  ADS  Google Scholar 

  7. A. Cornia et al., J. Magn. Magn. Mater. 226, 2012 (2001)

    Article  ADS  Google Scholar 

  8. D. Gatteschi, R. Sessoli, Angew. Chem. Int. Edit. 42, 268 (2003)

    Article  Google Scholar 

  9. C.J. Milios et al., J. Am. Chem. Soc. 129, 2754 (2007)

    Article  Google Scholar 

  10. S. Carretta et al., Phys. Rev. Lett. 100, 157203 (2008)

    Article  ADS  Google Scholar 

  11. T. Glaser et al., Inorg. Chem. 48, 607 (2009)

    Article  Google Scholar 

  12. T. Glaser, Chem. Commun. 47, 116 (2011)

    Article  Google Scholar 

  13. V. Hoeke et al., Dalton Trans. 41, 12942 (2012)

    Article  Google Scholar 

  14. V. Hoeke et al., Inorg. Chem. 51, 10929 (2012)

    Article  Google Scholar 

  15. V. Hoeke et al., Eur. J. Inorg. Chem. 2013, 4398 (2013)

    Article  Google Scholar 

  16. V. Hoeke et al., Inorg. Chem. 53, 257 (2014)

    Article  Google Scholar 

  17. J. Jaklic, P. Prelovsek, Phys. Rev. B 49, 5065 (1994)

    Article  ADS  Google Scholar 

  18. J. Jaklic, P. Prelovsek, Adv. Phys. 49, 1 (2000)

    Article  ADS  Google Scholar 

  19. U. Manthe, F. Huarte-Larranaga, Chem. Phys. Lett. 349, 321 (2001)

    Article  ADS  Google Scholar 

  20. M.W. Long et al., Phys. Rev. B 68, 235106 (2003)

    Article  ADS  Google Scholar 

  21. M. Aichhorn, M. Daghofer, H.G. Evertz, W. von der Linden, Phys. Rev. B 67, 161103 (2003)

    Article  ADS  Google Scholar 

  22. P. Prelovšek, J. Bonča, in Strongly Correlated Systems, Numerical Methods, Vol. 176 of Springer Series in Solid-State Sciences, edited by F.M. Adolfo Avella (Springer, Berlin, Heidelberg, 2013), Chap. Ground State and Finite Temperature Lanczos Methods

  23. N. Shannon, B. Schmidt, K. Penc, P. Thalmeier, Eur. Phys. J. B 38, 599 (2004)

    Article  ADS  Google Scholar 

  24. I. Zerec, B. Schmidt, P. Thalmeier, Phys. Rev. B 73, 245108 (2006)

    Article  ADS  Google Scholar 

  25. B. Schmidt, P. Thalmeier, N. Shannon, Phys. Rev. B 76, 125113 (2007)

    Article  ADS  Google Scholar 

  26. M. Siahatgar, B. Schmidt, G. Zwicknagl, P. Thalmeier, New J. Phys. 14, 103005 (2012)

    Article  ADS  Google Scholar 

  27. J. Jaklič, P. Prelovšek, Phys. Rev. B 50, 7129 (1994)

    Article  ADS  Google Scholar 

  28. J. Schnack, O. Wendland, Eur. Phys. J. B 78, 535 (2010)

    Article  ADS  Google Scholar 

  29. J. Schnack, C. Heesing, Eur. Phys. J. B 86, 46 (2013)

    Article  ADS  Google Scholar 

  30. Y. Zheng et al., Chem. Commun. 49, 36 (2013)

    Article  ADS  Google Scholar 

  31. C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950)

    Article  MathSciNet  Google Scholar 

  32. N. Regnault et al., Phys. Rev. B 66, 054409 (2002)

    Article  ADS  Google Scholar 

  33. G. Chaboussant et al., Phys. Rev. B 70, 104422 (2004)

    Article  ADS  Google Scholar 

  34. J. Schnack, P. Hage, H.-J. Schmidt, J. Comput. Phys. 227, 4512 (2008)

    Article  ADS  MATH  Google Scholar 

  35. H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. B 64, 224415 (2001)

    Article  ADS  Google Scholar 

  36. C.A. Thuesen et al., Dalton Trans. 39, 4882 (2010)

    Article  Google Scholar 

  37. H.-J. Schmidt, A. Lohmann, J. Richter, Phys. Rev. B 84, 104443 (2011)

    Article  ADS  Google Scholar 

  38. A. Lohmann, H.-J. Schmidt, J. Richter, Phys. Rev. B 89, 014415 (2014)

    Article  ADS  Google Scholar 

  39. T. Glaser et al., Dalton Trans. 39, 192 (2010)

    Article  Google Scholar 

  40. V.I. Lebedev, D.N. Laikov, Dokl. Akad. Nauk 366, 741 (1999)

    MathSciNet  Google Scholar 

  41. F. Lionti et al., J. Appl. Phys. 81, 4608 (1997)

    Article  ADS  Google Scholar 

  42. L. Thomas, B. Barbara, J. Low Temp. Phys. 113, 1055 (1998)

    Article  ADS  Google Scholar 

  43. I. Chiorescu et al., Phys. Rev. Lett. 85, 4807 (2000)

    Article  ADS  Google Scholar 

  44. S. Sanz et al., Chem. Eur. J. 20, 3010 (2014)

    Article  Google Scholar 

  45. C. Delfs et al., Inorg. Chem. 32, 3099 (1993)

    Article  Google Scholar 

  46. J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Inorg. Chem. 38, 6081 (1999)

    Article  Google Scholar 

  47. O. Waldmann, Phys. Rev. B 61, 6138 (2000)

    Article  ADS  Google Scholar 

  48. I.G. Bostrem, A.S. Ovchinnikov, V.E. Sinitsyn, Theor. Math. Phys. 149, 1527 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. R. Schnalle, J. Schnack, Phys. Rev. B 79, 104419 (2009)

    Article  ADS  Google Scholar 

  50. R. Schnalle, J. Schnack, Int. Rev. Phys. Chem. 29, 403 (2010)

    Article  Google Scholar 

  51. A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991)

    Article  ADS  Google Scholar 

  52. A.W. Sandvik, Phys. Rev. B 59, R14157 (1999)

    Article  ADS  Google Scholar 

  53. L. Engelhardt, M. Luban, Phys. Rev. B 73, 054430 (2006)

    Article  ADS  Google Scholar 

  54. S.R. White, Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  55. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanebaum, O., Schnack, J. Advanced finite-temperature Lanczos method for anisotropic spin systems. Eur. Phys. J. B 87, 194 (2014). https://doi.org/10.1140/epjb/e2014-50360-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50360-5

Keywords

Navigation