Skip to main content
Log in

Competition between crystal field splitting and Hund’s rule coupling in two-orbital magnetic metal-insulator transitions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Competition between crystal field splitting and Hund’s rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb interaction, the system firstly transits from a paramagnetic (PM) metal to a Néel antiferromagnetic (AFM) Mott insulator, or to a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund’s rule coupling. The AFM Mott insulating, PM metallic and orbital insulating phases are not, partially and fully orbital polarized, respectively. For a small J H and a finite crystal field, the orbital insulator is robust. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund’s rule coupling tends to destroy it, driving the low-spin to high-spin transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liebsch, Phys. Rev. Lett. 91, 22 (2003)

    Article  Google Scholar 

  2. A. Liebsch, Phys. Rev. B 70, 165103 (2004)

    Article  ADS  Google Scholar 

  3. K. Bouadim, G.G. Batrouni, R.T. Scalettar, Phys. Rev. Lett. 102, 226402 (2009)

    Article  ADS  Google Scholar 

  4. A. Koga, N. Kawakami, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 92, 21 (2004)

    Google Scholar 

  5. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  6. E. Jakobi, N. Blümer, P. Van Dongen, Phys. Rev. B 80, 115109 (2009)

    Article  ADS  Google Scholar 

  7. L. De’Medici, A. Georges, S. Biermann, Phys. Rev. B 72, 205124 (2005)

    Article  ADS  Google Scholar 

  8. Y. Song and L.-J. Zou, Eur. Phys. J. B 72, 59 (2009)

    Article  ADS  Google Scholar 

  9. L. de’Medici, S.R. Hassan, M. Capone, X. Dai, Phys. Rev. Lett. 102, 126401 (2009)

    Article  ADS  Google Scholar 

  10. A. Rüegg, M. Indergand, S. Pilgram, M. Sigrist, Eur. Phys. J. B 48, 55 (2005)

    Article  ADS  Google Scholar 

  11. X. Dai, G. Kotliar, Z. Fang, e-print arXiv:cond-mat/ 0611075v1 (2006)

  12. Rong Yu and Qimiao Si, Phys. Rev. B 84, 235115 (2011)

    Article  ADS  Google Scholar 

  13. V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, M. Sigrist, Eur. Phys. J. B 25, 191 (2002)

    ADS  Google Scholar 

  14. H. Hasegawa, Phys. Rev. B 56, 1196 (1997)

    Article  ADS  Google Scholar 

  15. G. Kotliar, A. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Hooke, T.A. Jeeves, J. ACM 2, 8 (1961)

    Google Scholar 

  17. R. Fletcher, Practical Methods of Optimization, in Unconstrained optimization (John Wiley & Sons, New York, 1980), Vol. 1

  18. H.H. Rosenbrock, Computer Journal 3, 3 (1960)

    Article  MathSciNet  Google Scholar 

  19. F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods (Springer Press, Springer, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, Y.M., Zou, L.J., Liu, D.Y. et al. Competition between crystal field splitting and Hund’s rule coupling in two-orbital magnetic metal-insulator transitions. Eur. Phys. J. B 85, 55 (2012). https://doi.org/10.1140/epjb/e2011-20613-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20613-0

Keywords

Navigation