Skip to main content
Log in

Abstract

We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, G. Schön (Kluwer, Dordreht, 1997)

  2. Mesoscopic Quantum Physics, edited by E. Akkermans, G. Montambaux, J.L. Pichard, J. Zinn-Justin (North Holland, Amsterdam, 1995)

  3. Mesoscopic phenomena in Solids, edited by B.L. Altshuler, P.A. Lee, R.A. Web (North Holland, Amsterdam, 1991)

  4. I.L. Aleiner, P.W. Brouwer, L.I. Glazman, Phys. Rep. 358, 309 (2002)

    Article  ADS  Google Scholar 

  5. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)

    Article  ADS  Google Scholar 

  6. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarusha, R.M. Westerweld, N.S. Wingreen, in reference [1]

  7. D.V. Averin, K.K. Likharev in reference [3]

  8. L. Kouwenhoven, Leonid Glazman, Physics World 14, 33 (2001)

    Google Scholar 

  9. L.I. Glazman, M.E. Raikh, Sov. Phys. JETP Lett. 47, 454 (1988)

    ADS  Google Scholar 

  10. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  11. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Madger, U. Meirav, M. A. Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  12. S.M. Cronenwet, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  13. J. Schmid, J. Weis, K. Eberl, K. von Klitzing, Physica B 256, 182 (1998)

    Article  ADS  Google Scholar 

  14. T. Costi, Phys. Rev. B 64, 241310(R) (2001)

    Article  ADS  Google Scholar 

  15. P. Recher, E. Sukhorukov, D. Loss, Phys. Rev. Lett. 85, 1962 (2000)

    Article  ADS  Google Scholar 

  16. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  17. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402, 790 (1999)

    Article  ADS  Google Scholar 

  18. M. Popp, D. Frustaglia, K. Richter, Nanothechnology 14, 347 (2003)

    Article  ADS  Google Scholar 

  19. A. Kiselev, K.W. Kim, preprint, J. Appl. Phys. 94, 4001 (2003)

    Article  ADS  Google Scholar 

  20. D. Schmeltzer, A.R. Bishop, A. Saxena, D.L. Smith, Phys. Rev. Lett. 90, 116802 (2003)

    Article  ADS  Google Scholar 

  21. U. Fano, Phys. Rev. 124, 1866 (1961); J.A. Simpson, U. Fano, Phys. Rev. Lett. 11, 158 (1963)

    Article  ADS  MATH  Google Scholar 

  22. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. B 62, 2188 (2000)

    Article  ADS  Google Scholar 

  23. M.E. Torio, K. Hallberg, A.H. Ceccatto, C.R. Proetto, Phys. Rev. B 65, 085302 (2002)

    Article  ADS  Google Scholar 

  24. K. Kang, Y. Cho, Ju-Jin Kim, Sung-Chul Shin, Phys. Rev. B 63, 113304 (2001)

    Article  ADS  Google Scholar 

  25. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge UK, 1993)

  26. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  27. D.C. Langreth, Phys. Rev. 150, 516 (1966)

    Article  ADS  Google Scholar 

  28. For a detailed derivation in the absence of magnetic fields we refer to reference [24]

  29. P.B. Wiegmann, A.M. Tsvelick, J. Phys. C 16, 2281 (1983)

    Article  ADS  Google Scholar 

  30. E. Dagotto, A. Moreo, Phys. Rev. D 31, 865 (1985); E. Gagliano, E. Dagotto, A. Moreo, F. Alcaraz, Phys. Rev. B, 34 1677 (1986)

    Article  ADS  Google Scholar 

  31. C. Caroli, R. Combescot, P. Nozieres, F. Alcaraz, J. Phys. C 4, 916 (1971); W. Metzner, Phys. Rev. B 43, 8549 (1991)

    Article  ADS  Google Scholar 

  32. V. Ferrari, G. Chiappe, E.V. Anda, M.A. Davidovich, Phys. Rev. Lett. 82, 5088 (1999)

    Article  ADS  Google Scholar 

  33. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  34. B.R. Bulka, P. Stefanski, Phys. Rev. Lett. 86, 5128 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Torio.

Additional information

Received: 6 November 2003, Published online: 2 April 2004

PACS:

72.15.Qm Scattering mechanisms and Kondo effect - 73.23.Ad Ballistic transport - 72.25.-b Spin polarized transport

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torio, M.E., Hallberg, K., Flach, S. et al. Spin filters with Fano dots. Eur. Phys. J. B 37, 399–403 (2004). https://doi.org/10.1140/epjb/e2004-00072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00072-6

Keywords

Navigation