Skip to main content
Log in

Constraints on the chiral unitary \(\bar KN\) amplitude from πΣK+ photoproduction data

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We confirm the two-pole structure of the Λ(1405). The narrow Λ(1405) pole appears at comparable positions in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In the second step, we use a simple model for photoproduction of K + πΣ off the proton and confront it with the experimental data from the CLAS Collaboration. It is found that only a few of the hadronic solutions allow for a consistent description of the CLAS data within the assumed reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Oller, U.-G. Meißner, Phys. Lett. B 500, 263 (2001) arXiv:hep-ph/0011146.

    Article  ADS  Google Scholar 

  2. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.-G. Meißner, Nucl. Phys. A 725, 181 (2003) arXiv:nucl-th/0303062.

    Article  ADS  Google Scholar 

  3. T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012) arXiv:1104.4474 [nucl-th].

    Article  ADS  Google Scholar 

  4. B. Borasoy, U.-G. Meißner, R. Nißler, Phys. Rev. C 74, 055201 (2006) [hep-ph/0606108].

    Article  ADS  Google Scholar 

  5. M. Bazzi et al., Phys. Lett. B 704, 113 (2011) arXiv:1105.3090 [nucl-ex].

    Article  ADS  Google Scholar 

  6. M. Mai, V. Baru, E. Epelbaum, A. Rusetsky, arXiv:1411.4881 [nucl-th].

  7. R.J. Hemingway, Nucl. Phys. B 253, 742 (1985).

    Article  ADS  Google Scholar 

  8. I. Zychor et al., Phys. Lett. B 660, 167 (2008) arXiv:0705.1039 [nucl-ex].

    Article  ADS  Google Scholar 

  9. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 87, 025201 (2013).

    Article  ADS  Google Scholar 

  10. CLAS Collaboration (K. Moriya et al.), Phys. Rev. C 87, 035206 (2013) arXiv:1301.5000 [nucl-ex].

    Article  Google Scholar 

  11. CLAS Collaboration (K. Moriya et al.), Phys. Rev. Lett. 112, 082004 (2014) arXiv:1402.2296 [hep-ex].

    Article  ADS  Google Scholar 

  12. L. Roca, E. Oset, Phys. Rev. C 87, 055201 (2013) arXiv:1301.5741 [nucl-th].

    Article  ADS  Google Scholar 

  13. L. Roca, E. Oset, Phys. Rev. C 88, 055206 (2013) arXiv:1307.5752 [nucl-th].

    Article  ADS  Google Scholar 

  14. S.X. Nakamura, D. Jido, PTEP 2014, 023D01 (2014) arXiv:1310.5768 [nucl-th].

    Google Scholar 

  15. M. Mai, U.-G. Meißner, Nucl. Phys. A 900, 51 (2013) arXiv:1202.2030 [nucl-th].

    Article  ADS  Google Scholar 

  16. D. Rönchen et al., Eur. Phys. J. A 50, 101 (2014) arXiv:1401.0634 [nucl-th].

    Article  ADS  Google Scholar 

  17. B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Nissler, Eur. Phys. J. A 34, 161 (2007) arXiv:0709.3181 [nucl-th].

    Article  ADS  Google Scholar 

  18. M. Mai, P.C. Bruns, U.-G. Meißner, Phys. Rev. D 86, 094033 (2012) arXiv:1207.4923 [nucl-th].

    Article  ADS  Google Scholar 

  19. P.C. Bruns, M. Mai, U.-G. Meißner, Phys. Lett. B 697, 254 (2011) arXiv:nucl-th/1012.2233.

    Article  ADS  Google Scholar 

  20. A. Krause, Helv. Phys. Acta 63, 3 (1990).

    Google Scholar 

  21. M. Frink, U.-G. Meißner, JHEP 07, 028 (2004) arXiv:hep-lat/0404018.

    Article  ADS  Google Scholar 

  22. B. Borasoy, R. Nißler, W. Weise, Eur. Phys. J. A 25, 79 (2005) [hep-ph/0505239].

    Article  Google Scholar 

  23. J.A. Oller, Eur. Phys. J. A 28, 63 (2006) [hep-ph/0603134].

    Article  ADS  Google Scholar 

  24. Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011) arXiv:1109.3005 [nucl-th].

    Article  ADS  Google Scholar 

  25. Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881, 98 (2012) arXiv:1201.6549 [nucl-th].

    Article  ADS  Google Scholar 

  26. Z.H. Guo, J.A. Oller, Phys. Rev. C 87, 035202 (2013) arXiv:1210.3485 [hep-ph].

    Article  ADS  Google Scholar 

  27. J. Ciborowski et al., J. Phys. G 8, 13 (1982).

    Article  ADS  Google Scholar 

  28. W.E. Humphrey, R.R. Ross, Phys. Rev. 127, 1305 (1962).

    Article  ADS  Google Scholar 

  29. M. Sakitt, T.B. Day, R.G. Glasser, N. Seeman, J.H. Friedman, W.E. Humphrey, R.R. Ross, Phys. Rev. B 139, 719 (1965).

    Article  ADS  Google Scholar 

  30. M.B. Watson, M. Ferro-Luzzi, R.D. Tripp, Phys. Rev. 131, 2248 (1963).

    Article  ADS  Google Scholar 

  31. D.N. Tovee et al., Nucl. Phys. B 33, 493 (1971).

    Article  ADS  Google Scholar 

  32. R.J. Nowak et al., Nucl. Phys. B 139, 61 (1978).

    Article  ADS  Google Scholar 

  33. U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 35, 349 (2004) [hep-ph/0402261].

    Article  ADS  Google Scholar 

  34. Minuit2 released in ROOT 5.22/00, http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Mai.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, M., Meißner, UG. Constraints on the chiral unitary \(\bar KN\) amplitude from πΣK+ photoproduction data. Eur. Phys. J. A 51, 30 (2015). https://doi.org/10.1140/epja/i2015-15030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15030-3

Keywords

Navigation