Skip to main content
Log in

In-medium chiral perturbation theory

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We report on how to tackle the problem of establishing a chiral effective field theory in nuclear matter with explicit pion fields and in the presence of external sources (Ann. Phys. 297, 27 (2002)). We have made use of the results of J.A. Oller (Phys. Rev. C 65, 025204 (2002)) where the generating functional for the in-medium chiral SU(2) x SU(2) Lagrangian has been derived. Within this approach we develop the so-called standard power counting rules for the calculation of in-medium pion properties if the residual nucleon energies are of the order of the pion mass. In addition, for the case of vanishing residual nucleon energies, a modified scheme (non-standard counting) is introduced. For both schemes the pertinent scales where the chiral expansions have to break down are established as well. We have performed a systematic analysis of n-point in-medium Green functions up to and including next-to-leading order when the standard rules apply. These include the in-medium contributions to quark condensates, pion propagators, pion masses and couplings of the axial-vector, vector and pseudoscalar currents to pions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.-G. Meißner, J.A. Oller, A. Wirzba, Ann. Phys. 297, 27 (2002).

    Article  Google Scholar 

  2. J.A. Oller, Phys. Rev. C 65, 025204 (2002).

    Article  Google Scholar 

  3. S. Weinberg, Physica A 96, 327 (1979).

    Article  Google Scholar 

  4. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

    Google Scholar 

  5. D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986).

    Article  Google Scholar 

  6. G.E. Brown, K. Kubodera, M. Rho, V. Thorsson, Phys. Lett. B 291, 355 (1992)

    Article  Google Scholar 

  7. V. Thorsson, A. Wirzba, Nucl. Phys. A 589, 633 (1995)

    Article  Google Scholar 

  8. M. Kirchbach, A. Wirzba, Nucl. Phys. A 604, 395 (1996)

    Article  Google Scholar 

  9. N. Fettes, U.-G. Meißner, S. Steininger, Nucl. Phys. A 640, 199 (1998).

    Article  Google Scholar 

  10. N. Fettes, U.-G. Meißner, Nucl. Phys. A 676, 311 (2000).

    Article  Google Scholar 

  11. J. Gasser, M.E. Sainio, A. Svarc, Nucl. Phys. B 307, 779 (1988).

    Article  Google Scholar 

  12. E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27, 77 (1991).

    Article  Google Scholar 

  13. T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 45, 1881 (1992).

    Article  Google Scholar 

  14. V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. A 615, 483 (1997).

    Article  Google Scholar 

  15. P. Büttiker, U.-G. Meißner, Nucl. Phys. A 668, 97 (2000).

    Article  Google Scholar 

  16. H. Gilg, Phys. Rev. C 62, 025201 (2000).

    Article  Google Scholar 

  17. K. Itahasi, Phys. Rev. C 62, 025202 (2000).

    Article  Google Scholar 

  18. N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001).

    Article  Google Scholar 

  19. M. Kirchbach, D.O. Riska, Nucl. Phys. A 578, 511 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wirzba.

Additional information

Received: 30 September 2002, Published online: 22 October 2003

PACS:

12.39.Fe Chiral Lagrangians - 11.30.Rd Chiral symmetries - 21.65. + f Nuclear matter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirzba, A., Meißner, UG. & Oller, J.A. In-medium chiral perturbation theory. Eur. Phys. J. A 18, 507–510 (2003). https://doi.org/10.1140/epja/i2002-10271-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2002-10271-9

Keywords

Navigation