Skip to main content
Log in

When the leak is weak – how the first-passage statistics of a biased random walk can approximate the ISI statistics of an adapting neuron

  • Regular Article
  • Applications in Biology and Medicine
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Sequences of first-passage times can describe the interspike intervals (ISI) between subsequent action potentials of sensory neurons. Here, we consider the ISI statistics of a stochastic neuron model, a leaky integrate-and-fire neuron, which is driven by a strong mean input current, white Gaussian current noise, and a spike-frequency adaptation current. In previous studies, it has been shown that without a leak current, i.e. for a so-called perfect integrate-and-fire (PIF) neuron, the ISI density can be well approximated by an inverse Gaussian corresponding to the first-passage-time density of a biased random walk. Furthermore, the serial correlations between ISIs, which are induced by the adaptation current, can be described by a geometric series. By means of stochastic simulations, we inspect whether these results hold true in the presence of a modest leak current. Specifically, we measure mean and variance of the ISI in the full model with leak and use the analytical results for the perfect IF model to relate these cumulants of the ISI to effective values of the mean input and noise intensity of an equivalent perfect IF model. This renormalization procedure yields semi-analytical approximations for the ISI density and the ISI serial correlation coeffcient in the full model with leak. We find that both in the absence and the presence of an adaptation current, the ISI density can be well approximated in this way if the leak current constitutes only a weak modification of the dynamics. Moreover, also the serial correlations of the model with leak are well reproduced by the expressions for a PIF model with renormalized parameters. Our results explain, why expressions derived for the rather special perfect integrate-and-fire model can nevertheless be often well fit to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer, Berlin, 2002)

  2. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  3. G.L. Gerstein, B. Mandelbrot, Biophys. J. 4, 41 (1964)

    Article  Google Scholar 

  4. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, UK, 2001)

  5. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  6. V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier, Phys-Usp. 42, 7 (1999)

    Article  ADS  Google Scholar 

  7. A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. B. Lindner, M. Kostur, L. Schimansky-Geier, Fluct. Noise Lett. 1, R25 (2001)

    Article  Google Scholar 

  9. B. Lindner, L. Schimansky-Geier, Phys. Rev. Lett. 89, 230602 (2002)

    Article  ADS  Google Scholar 

  10. B. Lindner, Phys. Rev. E 73, 022901 (2006)

    Article  ADS  Google Scholar 

  11. B. Lindner, T. Schwalger, Phys. Rev. Lett. 98, 210603 (2007)

    Article  ADS  Google Scholar 

  12. D.R. Cox, Renewal Theory (Methuen, London, 1962)

  13. R.B. Stein, Biophys. J. 5, 173 (1965)

    Article  ADS  Google Scholar 

  14. R.B. Stein, Biophys. J. 7, 37 (1967)

    Article  ADS  Google Scholar 

  15. P. Johannesma, Neural Networks, edited by E. Caianiello (Springer, Berlin, 1968), p. 116

  16. E. Schrödinger, Physik. Z. 16, 289 (1915)

    Google Scholar 

  17. J. Benda, A.V.M. Herz, Neural Comp. 15, 2523 (2003)

    Article  MATH  Google Scholar 

  18. Y.H. Liu, X.J. Wang, J. Comp. Neurosci. 10, 25 (2001)

    Article  Google Scholar 

  19. K. Fisch, T. Schwalger, B. Lindner, A. Herz, J. Benda, J. Neurosci. 32, 17332 (2012)

    Article  Google Scholar 

  20. T. Schwalger, K. Fisch, J. Benda, B. Lindner, PLoS Comput. Biol. 6, e1001026 (2010)

    Article  MathSciNet  Google Scholar 

  21. A.N. Burkitt, Biol. Cybern. 95, 1 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)

    Article  ADS  MATH  Google Scholar 

  23. A. Bulsara, T.C. Elston, C.R. Doering, S.B. Lowen, K. Lindenberg, Phys. Rev. E 53, 3958 (1996)

    Article  ADS  Google Scholar 

  24. A.V. Holden, Models of the Stochastic Activity of Neurones (Springer-Verlag, Berlin, 1976)

  25. O. Avila-Akerberg, M.J. Chacron, Exp. Brain Res. (2011)

  26. R.D. Vilela, B. Lindner, J. Theor. Biol. 257, 90 (2009)

    Article  MathSciNet  Google Scholar 

  27. S. Ostojic, J. Neurophysiol. 106, 361 (2011)

    Article  Google Scholar 

  28. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984)

  29. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. F.T. Arecchi, A. Politi, Phys. Rev. Lett. 45, 1219 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwalger, T., Miklody, D. & Lindner, B. When the leak is weak – how the first-passage statistics of a biased random walk can approximate the ISI statistics of an adapting neuron. Eur. Phys. J. Spec. Top. 222, 2655–2666 (2013). https://doi.org/10.1140/epjst/e2013-02045-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-02045-4

Keywords

Navigation