Skip to main content
Log in

Predicting the mechanical properties of spider silk as a model nanostructured polymer

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Spider silk is attractive because it is strong and tough. Moreover, an enormous range of mechanical properties can be achieved with only small changes in chemical structure. Our research shows that the full range of thermo-mechanical properties of silk fibres can be predicted from mean field theory for polymers in terms of chemical composition and the degree of order in the polymer structure. Thus, we can demonstrate an inherent simplicity at a macromolecular level in the design principles of natural materials. This surprising observation allows in depth comparison of natural with man-made materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Fox, New Scientist, 24 April 1999, pp. 38–41

  • F. Vollrath, Reviews in Molecular Biotechnology 74, 67 (2000)

    Google Scholar 

  • Z. Shao, F. Vollrath, Nature 418, 741 (2002)

    Google Scholar 

  • F. Vollrath, D. Knight, in Handbook of Biopolymers, edited by A. Steinbüchel, S. Fahnestock (Wiley-VCH, Heidelberg and New York, 2003), Chap. 2, p. 25

  • Z. Shao, Y. Yang, X. Chen, P. Zhou, D. Knight, D. Porter, F. Vollrath, Spider silk performs as much tougher material at low temperatures, Adv. Mater. (in press)

  • D.T. Grubb, L.W. Jelinski, Macromolecules 30, 2860 (1997)

    Google Scholar 

  • J.D. van Beek et al., PNAS 99, 10266 (2002)

    Google Scholar 

  • B.L. Thiel et al., Biopolymers 34, 1089 (1994); B.L. Thiel, Biopolymers 41, 703 (1997)

    Google Scholar 

  • J.M. Gosline et al., in Silk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 27, p. 328

  • M.A. Becker et al., in Silk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 17, p. 185

  • Y. Termonia, Macromolecules 27, 7378 (1994)

    Google Scholar 

  • M.J. Forster, Micron 33, 365 (2002)

    Google Scholar 

  • J.J.M. Baltussen, M.G. Northolt, Polymer 40, 6113 (1999)

    Google Scholar 

  • A. Galeski, Prog. Polym. Sci. 28, 1643 (2003)

    Google Scholar 

  • D. Porter, Group Interaction Modelling of Polymer Properties (Marcel Dekker, New York, 1995)

  • M.J. Buehler, F.F. Abraham, H. Gao, Nature 426, 141 (2003)

    Google Scholar 

  • D. Porter, Mat. Sci. Eng. A 365, 38 (2004)

    Google Scholar 

  • M. Xu, R.V. Lewis, Proc. Natl. Acad. Sci. USA 87, 7120 (1990)

    Google Scholar 

  • D.W. van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1993)

  • J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 1993)

  • J. Rossmeisl et al., J. Chem. Phys. 118, 9783 (2003)

    Google Scholar 

  • Molecular mechanics and dynamics simulations performed on the Cerius2 system of Accelrys Inc.: see http://www.Accelrys.com

  • B. Wunderlich, S.Z.D. Cheng, K. Loufakis, Thermodynamic Properties in Encyclopedia of Polymer Science and Engineering, Vol. 16 (Wiley-Interscience, New York, 1989)

  • H.S. Bu, S.Z.D. Cheng, B. Wunderlich, J. Phys. Chem. 91, 4179 (1987)

    Google Scholar 

  • V.V. Tarasov, G.A. Yunitskill, Russian J. Phys. Chem. 39, 1109 (1965)

    Google Scholar 

  • N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (John Wiley and Sons, London, 1967)

  • A. Bondi, Physical Properties of Molecular Crystals, Liquids, and Glasses (John Wiley and Sons Inc., New York, 1969), p. 401

  • F. Vollrath, Proc. R. Soc. Lond. B 268, 2339 (2001)

    Google Scholar 

  • Z. Shao, F. Vollrath, Polymer 40, 1799 (1999)

    Google Scholar 

  • D. Porter, J. Non-Newtonian Fluid Mech. 68, 141 (1997)

    Google Scholar 

  • J. Perez-Rigueiro et al., J. Appl. Polym. Sci. 82, 2245 (2001)

    Google Scholar 

  • A. Lazaris et al., Science 295, 472 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, D., Vollrath, F. & Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 16, 199–206 (2005). https://doi.org/10.1140/epje/e2005-00021-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2005-00021-2

Keywords

Navigation