Skip to main content
Log in

Neutron star mass limit at 2M supports the existence of a CEP

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We point out that the very existence of a “horizontal branch” in the mass-radius characteristics for neutron stars indicates a strong first-order phase transition and thus supports the existence of a critical endpoint (CEP) of first-order phase transitions in the QCD phase diagram. This branch would sample a sequence of hybrid stars with quark matter core, leading to the endpoint of stable compact star configurations with the highest possible baryon densities. Since we know of the existence of compact stars with \( 2 M_{\odot}\), this hypothetical branch has to lie in the vicinity of this mass value, if it exists. We report here a correlation between the maximal radius of the horizontal branch and the pressure at the onset of hadron-to-quark matter phase transition, which is likely to be a universal quantity of utmost relevance to the upcoming experiments with heavy-ion collisions at NICA and FAIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  2. E. Fonseca, arXiv:1603.00545 [astro-ph.HE]

  3. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  4. M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013)

    Article  ADS  Google Scholar 

  5. T. Klähn, D. Blaschke, F. Sandin, C. Fuchs, A. Faessler, H. Grigorian, G. Röpke, J. Trümper, Phys. Lett. B 654, 170 (2007)

    Article  ADS  Google Scholar 

  6. T. Klähn, R. Lastowiecki, D.B. Blaschke, Phys. Rev. D 88, 085001 (2013)

    Article  ADS  Google Scholar 

  7. C. Hoyos, D. Rodriguez Fernandez, N. Jokela, A. Vuorinen, Phys. Rev. Lett. 117, 032501 (2016)

    Article  ADS  Google Scholar 

  8. T. Kojo, Eur. Phys. J. A 52, 51 (2016)

    Article  ADS  Google Scholar 

  9. T. Schäfer, F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999)

    Article  ADS  Google Scholar 

  10. T. Hatsuda, M. Tachibana, N. Yamamoto, G. Baym, Phys. Rev. Lett. 97, 122001 (2006)

    Article  ADS  Google Scholar 

  11. H. Abuki, G. Baym, T. Hatsuda, N. Yamamoto, Phys. Rev. D 81, 125010 (2010)

    Article  ADS  Google Scholar 

  12. M. Baldo, G.F. Burgio, H.-J. Schulze, in Superdense QCD Matter and Compact Stars (Springer, Heidelberg, 2006) p. 113

  13. M. Alford, M. Braby, M.W. Paris, S. Reddy, Astrophys. J. 629, 969 (2005)

    Article  ADS  Google Scholar 

  14. R. Lastowiecki, D. Blaschke, H. Grigorian, S. Typel, Acta Phys. Pol. Suppl. 5, 535 (2012)

    Article  Google Scholar 

  15. J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013)

    Article  ADS  Google Scholar 

  16. https://heasarc.gsfc.nasa.gov/docs/nicer

  17. http://www.ska.ac.za

  18. D. Alvarez-Castillo, A. Ayriyan, S. Benic, D. Blaschke, H. Grigorian, S. Typel, Eur. Phys. J. A 52, 69 (2016)

    Article  ADS  Google Scholar 

  19. A. Ayriyan, D.E. Alvarez-Castillo, D. Blaschke, H. Grigorian, J. Phys. Conf. Ser. 668, 012038 (2016)

    Article  ADS  Google Scholar 

  20. D.E. Alvarez-Castillo, A. Ayriyan, D. Blaschke, H. Grigorian, arXiv:1506.07755, eConf: C140926 (2015)

  21. A. Ayriyan, D.E. Alvarez-Castillo, D. Blaschke, H. Grigorian, M. Sokolowski, Phys. Part. Nucl. 46, 854 (2015)

    Article  Google Scholar 

  22. D. Alvarez-Castillo, A. Ayriyan, D. Blaschke, H. Grigorian, arXiv:1408.4449

  23. D.B. Blaschke, H.A. Grigorian, D.E. Alvarez-Castillo, A.S. Ayriyan, J. Phys. Conf. Ser. 496, 012002 (2014)

    Article  ADS  Google Scholar 

  24. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  25. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  26. S. Typel, Eur. Phys. J. A 52, 16 (2016)

    Article  ADS  Google Scholar 

  27. D.E. Alvarez-Castillo, D. Blaschke, arXiv:1304.7758

  28. D.E. Alvarez-Castillo, D. Blaschke, PoS CPOD2014, 045 (2015)

    Google Scholar 

  29. B.K. Agrawal, S.K. Dhiman, Phys. Rev. D 79, 103006 (2009)

    Article  ADS  Google Scholar 

  30. B.K. Agrawal, Phys. Rev. D 81, 023009 (2010)

    Article  ADS  Google Scholar 

  31. D. Blaschke, S. Fredriksson, H. Grigorian, A.M. Öztaş, F. Sandin, Phys. Rev. D 72, 065020 (2005)

    Article  ADS  Google Scholar 

  32. M. Prakash, J. R. Cooke, J.M. Lattimer, Phys. Rev. D 52, 661 (1995)

    Article  ADS  Google Scholar 

  33. S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015)

    Article  ADS  Google Scholar 

  34. S. Benic, Eur. Phys. J. A 50, 111 (2014)

    Article  ADS  Google Scholar 

  35. G.A. Contrera, A.G. Grunfeld, D.B. Blaschke, Phys. Part. Nucl. Lett. 11, 342 (2014)

    Article  Google Scholar 

  36. S. Benic, D. Blaschke, G.A. Contrera, D. Horvatic, Phys. Rev. D 89, 016007 (2014)

    Article  ADS  Google Scholar 

  37. M.B. Parappilly et al., Phys. Rev. D 73, 054504 (2006)

    Article  ADS  Google Scholar 

  38. W. Kamleh et al., Phys. Rev. D 76, 094501 (2007)

    Article  ADS  Google Scholar 

  39. O. Kaczmarek et al., Phys. Rev. D 83, 014504 (2011)

    Article  ADS  Google Scholar 

  40. D. Blaschke, D.E. Alvarez Castillo, S. Benic, G. Contrera, R. Lastowiecki, PoS ConfinementX, 249 (2012)

    Google Scholar 

  41. D. Blaschke, D.E. Alvarez-Castillo, S. Benic, PoS CPOD2013, 063 (2013)

    Google Scholar 

  42. C.J. Horowitz, E.J. Moniz, J.W. Negele, Phys. Rev. D 31, 1689 (1985)

    Article  ADS  Google Scholar 

  43. G. Röpke, D. Blaschke, H. Schulz, Phys. Rev. D 34, 3499 (1986)

    Article  ADS  Google Scholar 

  44. D.E. Alvarez-Castillo, M.A.R. Kaltenborn, D. Blaschke, J. Phys. Conf. Ser. 668, 012035 (2016)

    Article  ADS  Google Scholar 

  45. A.S. Khvorostukin, V.V. Skokov, V.D. Toneev, K. Redlich, Eur. Phys. J. C 48, 531 (2006)

    Article  ADS  Google Scholar 

  46. N. Yasutake, R. Lastowiecki, S. Benic, D. Blaschke, T. Maruyama, T. Tatsumi, Phys. Rev. C 89, 065803 (2014)

    Article  ADS  Google Scholar 

  47. D.E. Alvarez-Castillo, D. Blaschke, Phys. Part. Nucl. 46, 846 (2015)

    Article  Google Scholar 

  48. M. Bejger, private communication

  49. HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014)

    ADS  Google Scholar 

  50. M. Petran, J. Rafelski, Phys. Rev. C 88, 021901 (2013)

    Article  ADS  Google Scholar 

  51. J. Rafelski, M. Petran, Acta Phys. Pol. Suppl. 7, 35 (2014)

    Article  Google Scholar 

  52. V.F. Suleimanov, J. Poutanen, D. Klochkov, K. Werner, Eur. Phys. J. A 52, 20 (2016)

    Article  ADS  Google Scholar 

  53. D.E. Alvarez-Castillo, S. Kubis, ASP Conf. Ser. 466, 199 (2012)

    ADS  Google Scholar 

  54. D. Blaschke, D.E. Alvarez-Castillo, T. Klähn, arXiv:1604.08575.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alvarez-Castillo.

Additional information

Communicated by T. Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Castillo, D., Benic, S., Blaschke, D. et al. Neutron star mass limit at 2M supports the existence of a CEP. Eur. Phys. J. A 52, 232 (2016). https://doi.org/10.1140/epja/i2016-16232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16232-9

Navigation