Skip to main content
Log in

Improvement in Corrosion Resistance of Tantalum Oxide and Tantalum Oxide with Diethanolamine Sol–Gel Coated Magnesium Alloys

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, corrosion resistance was developed to ensure that AZ91 Mg alloy remains stable in the body for longer periods. For this purpose, tantalum oxide and tantalum oxide with diethanolamine coatings were made by sol–gel method on AZ91 magnesium alloy surfaces. The structural analyses of tantalum oxide and tantalum oxide with diethanolamine obtained by sol–gel method were carried out. By using the dip coating method, coatings with different concentrations of solutions and different dipping numbers were applied on AZ91 Mg alloy surfaces. Thus, the effects of dipping numbers and chemical content of the solution on the coating thicknesses, surface roughnesses, morphologies and corrosion resistances of coating layers were examined. As a result, it was determined that the coating thicknesses increased with the dipping number. The low number of dipping could not provide sufficient protective layer formation on the surface. Better results were obtained in samples with a high dipping numbers. It was observed that needle-like structures were formed in the solution using diethanolamine. As the amount of diethanolamine increased, a more homogeneous and dense coating layer was observed. Accordingly, an increase in corrosion resistance has been observed. It was determined that the corrosion rate of AZ91 Mg alloy has decreased by 86% with increasing dipping number and diethanolamine amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Hattab, M., Ben Hassen, S., Cecilia-Buenestado, J.A., Rodriguez-Castellon, E., and Ben Amor, Y., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 168.

    Article  Google Scholar 

  2. Sedighi, O., Shabestari, S.G., and Yavari, F., Thermochim. Acta, 2018, vol. 667, p 165.

    Article  CAS  Google Scholar 

  3. Zheng, T., Hu, Y., Pan F., Zhang, Y., and Tang A., J. Magnesium Alloys, 2019, vol. 7, p. 193.

    Article  CAS  Google Scholar 

  4. Fernandez, J., Ouardi, Y.E., Bonaste, J., Molina, J.M., and Cases, F., Corros. Sci., 2019, vol. 152, p. 75.

    Article  CAS  Google Scholar 

  5. Daroonparvar, M., Yajid, M.A., Bakhsheshi-Rad, H.R., Kumar, P., Kay, C.M., and Kalvala, P.R., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 5, p. 1039.

    Article  Google Scholar 

  6. Haghighi O., Amini, K., and Gharavi, F., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 164.

    Article  CAS  Google Scholar 

  7. Bakhsheshi-Rad, H.R., Ismail, A.F., Aziz, M., Hadisi, Z., Omidi, M., and Chen, X., Ceram. Int., 2019, vol. 45, p. 11883.

    Article  CAS  Google Scholar 

  8. Jin, W., Wang, G., Lin, Z., Feng, H., Li, W., Peng, X., Qasim, A.M., and Chu, P.K., Corros. Sci., 2017, vol. 114, p. 45.

    Article  CAS  Google Scholar 

  9. Schulze, V., Bleicher, F., Groche, P., Guo, Y.B., and Pyun, Y.S., CIRP Ann. - Manuf. Technol., 2016, vol. 65, p. 809.

    Article  Google Scholar 

  10. Liu, Y.-H., Cheng, W.-L., Zhang, Y., Niu, X.-F., Wang, H.-X., and Wang, L.-F., J. Alloys Compd., 2020, vol. 815, p. 152414.

    Article  CAS  Google Scholar 

  11. Mingo, B., Mohedano, M., Blawert, C., Olmo, R., Hort, N., and Arrabal, R., J. Alloys Compd., 2019, vol. 811, p. 151992.

    Article  CAS  Google Scholar 

  12. Oleinik, S.V., Rudnev, V.S., Kuzenkov, Yu.A., Yarovaya, T.P., Trubetskaya, L.F., and Nedozorov, P.M., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 1324.

    Article  CAS  Google Scholar 

  13. Ly, X.N. and Yang, S., Surf. Coat. Technol., 2019, vol. 358, p. 331.

    Article  CAS  Google Scholar 

  14. Xiong, Y., Hu, Q., Song, R., and Hu, X., Mater. Sci. Eng., C, 2017, vol. 75, p. 1299.

    Article  CAS  Google Scholar 

  15. Singh, S., Singh, G., and Bala, N., Mater. Chem. Phys., 2019, vol. 237, p. 121884.

    Article  CAS  Google Scholar 

  16. Xu, G., Shen, X., Hu, Y., Ma, P., and Cai, K., Surf. Coat. Technol., 2015, vol. 272, p. 58.

    Article  CAS  Google Scholar 

  17. Horandghadim, N., Khalil-Allafi, J., and Urgen, M., Mater. Sci. Eng., C, 2019, vol. 102, p. 683.

    Article  CAS  Google Scholar 

  18. Rudnev, V.S., Yarovaya, T.P., Medkov, M.A., Nedozorov, P.M., Kilin, K.N., Lukiyanchuk, I.V., and Ustinov, A.Yu, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 968.

    Article  CAS  Google Scholar 

  19. Hussein, A.H., Gepreel, M.A.H., Gouda, M.K., Hefnawy, A.M., and Kandil, S.H., Mater. Sci. Eng., C, 2016, vol. 61, p. 574.

    Article  CAS  Google Scholar 

  20. Stenlund, P., Omar, O., Brohede, U., Norgren, S., Norlindh, B., Johansson, A., Lausmaa, J., Thomsen, P., and Palmquist, A., Acta Biomater., 2015, vol. 20, p. 165.

    Article  CAS  Google Scholar 

  21. Biesiekierski, A., Lin, J., Li, Y., Ping, D., Yamabe-Mitarai, Y., and Wen, C., Acta Biomater., 2016, vol. 32, p. 336.

    Article  CAS  Google Scholar 

  22. Liu, J., Chang, L., Liu, H., Li, Y., Yang, H., and Ruan, J., Mater. Sci. Eng., C, 2017, vol. 71, p. 512.

    Article  CAS  Google Scholar 

  23. Sun, Y.-S., Chang, J.-H., and Huang, H.-H., Thin Solid Films, 2013, vol. 528, p 130.

    Article  CAS  Google Scholar 

  24. Chang, Y.-Y., Huang, H.-L., Chen, H.-J., Lai, C.-H., and Wen, C.-Y., Surf. Coat. Technol., 2014, vol. 259, p. 193.

    Article  CAS  Google Scholar 

  25. Hammami, O., Dhouibi, L., Berçot, P., Rezrazi, E.M., and Triki, E., Can. J. Chem. Eng., 2012, vol. 91, p. 19.

    Article  CAS  Google Scholar 

  26. Zhou, J., Zhao, G., Ren, X., Song, B., and Han, G., J. sol–gel Sci. Technol., 2011, vol. 58, p. 148.

    Article  CAS  Google Scholar 

  27. Kahraman, S., Çetinkaya, S., Çetinkara, H.A., and Güder, H.S., Mater. Res. Bull., 2014, vol. 50, p. 165.

    Article  CAS  Google Scholar 

  28. Liu, J., Xu, X., and Lu, X.P., ACS Biomater. Sci. Eng., 2016, vol. 2, p. 579.

    Article  CAS  Google Scholar 

  29. Pasinli, A., Yuksel, M., Celik, E., Sener, S., and Tas, A.C., Acta Biomater., 2010, vol. 6, p. 2282.

    Article  CAS  Google Scholar 

  30. Al-Arjan, W.S., Hector, A.L., and Levason, W., J. sol–gel Sci. Technol., 2016, vol. 79, p. 550.

    Article  CAS  Google Scholar 

  31. Brandes, E.A. and Brook, G.B., Smithells Light Metals Handbook, Oxford: Butterworth-Heinemann, 1998.

    Google Scholar 

  32. Kandil, A., J. Eng. Sci., 2012, vol. 40, p. 255.

    Google Scholar 

  33. ASM Handbook, vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, New York: ASM Int., 1990.

  34. Basu, B.J., Hariprakash, V., Aruna, S.T., Lakshmi, R.V., Manasa, J., and Shruthi, B.S., J. Sol–Gel Sci. Technol., 2010, vol. 56, p. 278.

    Article  CAS  Google Scholar 

  35. Oshida, Y., Bioscience and Bioengineering of Titanium Materials, Indianapolis: Elsevier, 2017.

    Google Scholar 

  36. Wolf, M.J., Roitsch, S., Mayer, J., Nijmeijer, A., and Bouwmeester, H.J.M., Thin Solid Films, 2013, vol. 527, p. 354.

    Article  CAS  Google Scholar 

  37. Devan, R.S., Ho, W.-D., Wu, S.Y., and Ma, Y.R., J. Appl. Crystallogr., 2010, vol. 43, p. 498.

    Article  CAS  Google Scholar 

  38. Fujisawa, S. and Yonezu, A., Proc. Int. Congress “Recent Advances in Structural Integrity Analysis” (APCF/SIF-2014), Sydney, 2014, p. 422.

  39. Tan, Q., Atrens, A., Mo, N., and Zhang, M.-X., Corros. Sci., 2016, vol. 112, p. 734.

    Article  CAS  Google Scholar 

  40. Rojasi, P.N., Rodil, S.E., Muhl, S., Ramirez, G., and Arzate, H., Mater. Res. Soc. Symp. Proc., 2009, vol. 1244, p. 1.

    Article  Google Scholar 

  41. Frankel, G.S., J. Electrochem. Soc., 1998, vol. 145, p. 2186.

    Article  CAS  Google Scholar 

  42. Tahmasebifar, A., Kayhan, S.M., Evis, Z., Tezcaner, A., Çinici, H., and Koç, M., J. Alloys Compd., 2016, vol. 687, p. 906.

    Article  CAS  Google Scholar 

  43. Callister, W.D. and Rethwisch, D.G., Materials Science and Engineering, New York: Wiley, 2020.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has been done as a part of the TÜBİTAK 1001 project titled “Production of AZ91 Magnesium Alloy Coated with Layered and Hybrid Ta2O5/Hydroxyapatite for Use in Permanent Orthopedic Applications and Determination of in-vitro and in-vivo Performance (Grant number: 118M364)”. The authors would like to thank The Scientific and Technical Research Council of Turkiye (TUBITAK) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canser Gül.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gül, C., Albayrak, S., Çinici, H. et al. Improvement in Corrosion Resistance of Tantalum Oxide and Tantalum Oxide with Diethanolamine Sol–Gel Coated Magnesium Alloys. Prot Met Phys Chem Surf 58, 603–614 (2022). https://doi.org/10.1134/S2070205122030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030108

Keywords:

Navigation