Skip to main content
Log in

Dissolution Behavior of Electrodeposited Ni–W Alloys

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Nickel (Ni)–Tungsten (W) alloys were electrodeposited galvanostatically (at–10 mA cm–2) on copper substrate with 3 different W contents under the controlled hydrodynamic conditions and then the anodic dissolution behaviors of the alloys were observed by potentiodynamic polarization and electrochemical quartz crystal microbalance (EQCM) techniques. While the structure of the electrodeposited Ni–W alloy with low W content (15.90% W) was crystalline, that of the alloy with high W content (50.80% W) was nano-crystalline according to X-ray diffraction patterns. The increase in the W content of the electrodeposited Ni–W alloy resulted decrease at pH 3 and increase at pH 7 and 12.5 in the anodic currents of the alloy. The pH dependent dissolutions caused electrodeposited alloy surface to have W—enrichment at pH 3 and Ni—enrichment at pH 7 and 12.5. These observations indicated that the selective dissolution of Ni or W was the main mechanism in the anodic dissolution of the electrodeposited Ni–W alloys. The EQCM experiments conducted at pH 7 supported the presence of the selective dissolution mechanism that the anodic dissolution potential of W was 0.42 V lower than that of Ni in the electrodeposited Ni–W alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsyntsaru, N., Cesiulis, H., Donten, M., et al., Surf. Eng. 2012, vol. 48, p. 491.

    Google Scholar 

  2. Podlaha, E.J. and Landolt, D., J. Electrochem. Soc., 1996, vol. 143, p. 885.

    Article  Google Scholar 

  3. Podlaha, E.J. and Landolt, D., J. Electrochem. Soc., 1997, vol. 144, p. 1672.

    Article  Google Scholar 

  4. Younes, O. and Gileadi, E., Electrochem. Solid-State Lett. 2000, vol. 3, p. 543.

    Article  Google Scholar 

  5. Younes, O. and Gileadi, E., J. Electrochem. Soc., 2002, vol. 149, p. C100.

  6. Younes, O., Zhu, L., and Gilead, E., Electrochim. Acta 2003, vol. 48, p. 2551.

    Article  Google Scholar 

  7. Obradovic, M.D., Stevanovic, R.M., and Despic, A.R., J. Electroanal. Chem., 2003, vol. 552, p. 185.

    Article  Google Scholar 

  8. Sriraman, K.R., Raman, S.G.S., and Seshadri, S.K., Mater. Sci. Eng., A 2006, vol. 418, p. 303.

    Article  Google Scholar 

  9. Krolikowski, A., Plonska, E., Ostrowski, A., et al., J. Solid State Electrochem., 2009, vol. 13, p. 263.

    Article  Google Scholar 

  10. Kumar, K.A., Kalaignan, G.P., and Muralidharan, V.S., Appl. Surf. Sci. 2012, vol. 259, p. 231.

    Article  Google Scholar 

  11. Ahmadi, M. and Guinel, M. J.-F., J. Alloys Compd., 2013, vol. 574, p. 196.

    Article  Google Scholar 

  12. Indyka, P., Lehman, E.B., Tarkowski, L., et al., J. Alloys Compd., 2014, vol. 590, p. 75.

    Article  Google Scholar 

  13. Zhu, L., Younes, O., Ashkenasy, N., et al., Appl. Surf. Sci. 2002, vol. 200, p. 1.

    Article  Google Scholar 

  14. Tian, L., Xu, J., and Qiang, C., Appl. Surf. Sci. 2011, vol. 257, p. 4689.

    Article  Google Scholar 

  15. Farzaneh, M.A., Ghavidel, M.R.Z., Raeissi, K., et al., Appl. Surf. Sci. 2011, vol. 257, p. 5919.

    Article  Google Scholar 

  16. Jones, A.R., Hamann, J., Lund, A.C., and Schuh, C.A., Plat. Surf. Finish. 2010, vol. 97, p. 52.

    Google Scholar 

  17. Chianpairot, A., Lothongkum, G., Schuh, C.A., and Boonyongmaneert, Y., Corros. Sci. 2011, vol. 53, p. 1066.

    Article  Google Scholar 

  18. Aljohani, T.A. and Hayden, B.E., Electrochim. Acta 2013, vol. 111, p. 930.

    Article  Google Scholar 

  19. Anik, M. and Osseo-Asare, K., J. Electrochem. Soc., 2002, vol. 149, p. B224.

  20. Anik, M., Turk. J. Chem., 2002, vol. 26, p. 915.

    Google Scholar 

  21. Anik, M., Corros. Sci. 2006, vol. 48, p. 4158.

    Article  Google Scholar 

  22. Anik, M., Electrochim. Acta 2009, vol. 54, p. 3943.

    Article  Google Scholar 

  23. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston, TX: NACE, 1974.

    Google Scholar 

  24. Itagaki, M., Nakazawa, H., Watanabe, K., and Noda, K., Corros. Sci. 1997, vol. 39, p. 901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Anik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adigüzel, Z., Anik, M. Dissolution Behavior of Electrodeposited Ni–W Alloys. Prot Met Phys Chem Surf 54, 316–324 (2018). https://doi.org/10.1134/S2070205118020120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118020120

Keywords

Navigation