Skip to main content
Log in

Production of Furfuryl Alcohol in the Presence of Copper-Containing Catalysts in the Selective Hydrogenation of Furfural

Catalysis in Industry Aims and scope Submit manuscript

Abstract

Cu- and Fe-containing catalysts are studied in the reaction of selective hydrogenation of furfural to furfuryl alcohol (FA). The catalysts are prepared by alloying the respective metal nitrates and reduced before the reaction directly in the reactor at 250°C. The process is conducted in a batch reactor at 150°C and 6.0 MPa of hydrogen pressure. It is shown that the most active catalyst is Cu20Fe66Al14, the furfural conversion and selectivity toward FA in the presence of which are 96 and 97 mol %, respectively. Inside a continuous-flow reactor in the presence of this catalyst, 100% furfural conversion can be attained at a selectivity toward FA of up to 95 mol % at 160°C and 5 MPa of hydrogen pressure. The resulting catalyst remains active for 30 h of continuous operation. The high activity of the copper–iron catalyst is likely due to the presence of stabilized finely divided copper particles in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ragab, T.I.M., Amer, H., Mossa, A.T., Emam, M., Hasaballah, A.A., and Helmy, H.W., Biocatal. Agric. Biotechnol., 2018, vol. 15, pp. 86–91.

    Article  Google Scholar 

  2. Santos, T.M., Alonso, M.V., Oliet, M., Domínguez, J.C., Rigual, V., and Rodriguez, F., Carbohydr. Polym., 2018, vol. 194, pp. 285–293.

    Article  CAS  PubMed  Google Scholar 

  3. US Patent 6747076, 2004.

  4. US Patent 1739919, 1929.

  5. Seo, G. and Chon, H., J. Catal., 1981, vol. 67, no. 2, pp. 424–429.

    Article  CAS  Google Scholar 

  6. Adkins, H. and Connor, R., J. Am. Chem. Soc., 1931, vol. 53, no. 3, pp. 1091–1095.

    Article  CAS  Google Scholar 

  7. Wojcik, B., Ind. Eng. Chem., 1948, vol. 40, no. 2, pp. 210–216.

    Article  CAS  Google Scholar 

  8. Yan, K. and Chen, A., Energy, 2013, vol. 58, pp. 357–363.

    Article  CAS  Google Scholar 

  9. Huang, W., Li, H., Zhu, B., Feng, Y., Wang, S., and Zhang, S., Ultrason. Sonochem., 2007, vol. 14, no. 1, pp. 67–74.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, D., Zemlyanov, D., Wu, T., Lobo-Lapidus, R., Dumesic, J., Miller, J., and Marshall, C., J. Catal., 2013, vol. 299, pp. 336–345.

    Article  CAS  Google Scholar 

  11. Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P.B., and Resasco, D.E., J. Catal., 2011, vol. 277, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  12. Xu, C., Zheng, L., Liu, J., and Huang, Z., Chin. J. Chem., 2011, vol. 29, no. 4, pp. 691–697.

    Article  CAS  Google Scholar 

  13. Chen, C., Xu, C., Feng, L., Li, Z., Suo, J., Qiu, F., and Yang, Y., Adv. Synth. Catal., 2005, vol. 347, no. 14, pp. 1848–1854.

    Article  CAS  Google Scholar 

  14. Ghashghaee, M., Shirvani, S., and Ghambarian, M., Appl. Catal., A, 2017, vol. 545, pp. 134–147.

  15. Yang, X., Meng, Q., Ding, G., Wang, Y., Chen, H., Zhu, Y.L., and Li, Y.W., Appl. Catal., A, 2018, vol. 561, pp. 78–86.

  16. Smirnov, A.A., Shilov, I.N., Alekseeva, M.V., Selisheva, S.A., and Yakovlev, V.A., Catal. Ind., 2018, vol. 10, no. 3, pp. 228–236.

    Article  Google Scholar 

  17. Khromova, S.A., Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Yu., Saraev, A.A., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., Top. Catal., 2016, vol. 59, nos. 15–16, pp. 1413–1423.

  18. Wang, C., Luo, J., Liao, V., Lee, J.D., Onn, T.M., Murray, C.B., and Gorte, R.J., Catal. Today, 2018, vol. 302, nos. 1–2, pp. 73–79.

  19. Kim, M.S., Simanjuntak, F.S.H., Lim, S., Jae, J., Ha, J.-M., and Lee, H., J. Ind. Eng. Chem., 2017, vol. 52, pp. 59–65.

    Article  CAS  Google Scholar 

  20. Amini, E., Rezaei, M., and Sadeghinia, M., Chin. J. Catal., 2013, vol. 34, no. 9, pp. 1762–1767.

    Article  CAS  Google Scholar 

  21. Zhu, X., Tu, X., Mei, D., Zheng, C., Zhou, J., Gao, X., Luo, Z., Ni, M., and Cen, K., Chemosphere, 2016, vol. 155, pp. 9–17.

    Article  CAS  PubMed  Google Scholar 

  22. Fedorov, A., Ermakov, D., Kaichev, V., Bulavchenko, O., and Yakovlev, V., Katal. Prom-sti, 2017, vol. 17, no. 4, pp. 315–323.

    Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education, agreement no. 14.575.21.0171, identification number RFMEFI57517X0171, “Development of Ways for the Processing of Products from the Conversion of Nonedible Plant Raw Materials into Furanic High-Octant Additives to Motor Fuels and Other High-Value Chemical Products.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Selishcheva, A. A. Smirnov, A. V. Fedorov, D. Yu. Ermakov, Yu. K. Gulyaeva or V. A. Yakovlev.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selishcheva, S.A., Smirnov, A.A., Fedorov, A.V. et al. Production of Furfuryl Alcohol in the Presence of Copper-Containing Catalysts in the Selective Hydrogenation of Furfural. Catal. Ind. 11, 216–223 (2019). https://doi.org/10.1134/S2070050419030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419030103

Keywords:

Navigation