Skip to main content
Log in

Effect of Methyltriclosan on the Functioning of Isolated Rat Liver Mitochondria and Permeability of Liposomal Membranes

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Effects of methyltriclosan, a biodegradation product of the antimicrobial agent triclosan, on the functional parameters of rat liver mitochondria were studied. It was found that methyltriclosan inhibits the activity of complexes II and IV of the respiratory chain. This causes a decrease in the rate of oxygen consumption by mitochondria in states 3 and 3UDNP. Methyltriclosan was shown to increase the rate of hydrogen peroxide production by rat liver mitochondria. In addition, methyltriclosan induces permeabilization of both mitochondrial membranes and the liposome membranes. Methyltriclosan, in contrast to triclosan, has a milder effect on organelles and their membranes. Possible mechanisms of methyltriclosan effects on mitochondria and liposomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Weatherly L.M., Grosse J.A. 2017. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B. Crit. Rev. 20 (8), 447–469.

    Article  CAS  Google Scholar 

  2. Levy C.W., Roujeinikova A., Sedelnikova S., Baker P.J., Stuitje A.R., Slabas A.R., Rice D.W, Rafferty J.B. 1999. Molecular basis of triclosan activity. Nature. 398, 383–384.

    Article  CAS  Google Scholar 

  3. Heath R.J., Rubin J.R., Holland D.R., Zhang E., Snow M.E., Rock C.O. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274, 11110–11114.

    Article  CAS  Google Scholar 

  4. Zhang L., Niu J., Wang Y. 2016. Full life-cycle toxicity assessment on triclosan using rotifer Brachionus calyciflorus. Ecotoxicol. Environ. Saf. 127, 30–35.

    Article  CAS  Google Scholar 

  5. Wang F., Xu R., Zheng F. 2018. Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish. Exp. Anim. 67 (2), 219–227.

    Article  CAS  Google Scholar 

  6. Palenske N.M., Nallani G.C., Dzialowski E.M. 2010. Physiological effects and bioconcentration of triclosan on amphibian larvae. J. CBPC. 152 (2), 232–240.

    Google Scholar 

  7. Matozzo V.A., Devoti C., Marin M.G. 2012. Immunotoxic effects of triclosan in the clam Ruditapes philippinarum. Ecotoxicology. 21 (1), 66–74.

    Article  CAS  Google Scholar 

  8. Feng Y., Zhang P., Zhang Z., Shi J., Jiao Z., Shao B. 2016. Endocrine disrupting effects of triclosan on the placenta in pregnant rats. J. PLoS One. 11 (5), e0154758.

    Article  Google Scholar 

  9. Louis G.W., Hallinger D.R., Braxton M.J., Kamel A., Stoker T.E. 2017. Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat. Toxicol. Environ. Health A. 80 (4), 236–249.

    Article  CAS  Google Scholar 

  10. Paul K.B., Hedge J.M., Bansal R., Zoeller R.T., Peter R., DeVito M.J., Crofton K.M. 2012. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. J. Toxicol. 300 (1–2), 31–45.

    Article  CAS  Google Scholar 

  11. Zorrilla L.M., Gibson E.K., Jeffay S.C., Crofton K.M., Setzer W.R., Cooper R.L., Stoker T.E. 2009. The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol. Sci. 107 (1), 56–64.

    Article  CAS  Google Scholar 

  12. Axelstad M., Boberg J., Vinggaard A.M., Christiansen S., Hass U. 2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. J. Food Chem. Toxicol. 59, 534–540.

    Article  CAS  Google Scholar 

  13. Wang. X., Chen X., Feng X., Chang F., Chen M., Xia Y., Chen L. 2015. Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. J. Sci. Rep. 5, 18252.

    Article  CAS  Google Scholar 

  14. Teplova V.V., Belosludtsev K.N., Kruglov A.G. 2017. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation. Toxicol. Lett. 275, 108–117.

    Article  CAS  Google Scholar 

  15. Dubinin M.V., Tenkov K.S., Svinin A.O., Samartsev V.N., Belosludtsev K.N. 2020. Effect of triclosan on the functioning of liver mitochondria and permeability of erythrocyte membranes of marsh frog (Pelophylax ridibundus (Pallas, 1771)). J. Membr. Biol. 253 (1), 1–10.

    Article  CAS  Google Scholar 

  16. Belosludtsev K.N., Belosludtseva N.V., Tenkov K.S., Penkov N.V., Agafonov A.V., Pavlik L.L., Yashin V.A., Samartsev V.N., Dubinin M.V. 2018. Study of the mechanism of permeabilization of lecithin liposomes and rat liver mitochondria by the antimicrobial drug triclosan. Biochim. Biophys. Acta Biomembr. 1860 (2), 264–271.

  17. Lindstrom A., Buerge I.J., Poiger T., Bergqvist P.A., Muller M.D., Buser H.R. 2002. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ. Sci. Technol. 36, 2322–2329.

    Article  Google Scholar 

  18. Chen X., Nielsen J. L., Furgal K., Liu Y., Lolas I.B., Bester K. 2011. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere. 84, 452–456.

    Article  CAS  Google Scholar 

  19. Clayborn A.B., Toofan S.N., Champlin F.R. 2011. Influence of methylation on the antibacterial properties of triclosan in Pasteurella multocida and Pseudomonas aeruginosa variant strains. J. Hosp. Infect. 77, 129–133.

    Article  CAS  Google Scholar 

  20. Fu J., Gong Z., Bae S. 2019. Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics. J. Hazard Mater. 368, 186–196.

    Article  CAS  Google Scholar 

  21. Chevillot F., Guyot M., Desrosiers M., Cadoret N., Veilleux E., Cabana H., Bellenger J.P. 2019. Accumulation and sublethal effects of triclosan and its transformation product methyl-triclosan in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Environ. Toxicol. Chem. 37 (7), 1940–1948.

    Article  Google Scholar 

  22. Wang L., Mao B., He H., Shang Y., Zhong Y., Yu Z., Yang Y., Li H., An J. 2018. Comparison of hepatotoxicity and mechanisms induced by triclosan (TCS) and methyl-triclosan (MTCS) in human liver hepatocellular HepG2 cells. Toxicol. Res. (Camb). 8 (1), 38–45.

    Article  Google Scholar 

  23. Rosen M. 2004. Surfactants and interfacial phenomena. 3rd ed. Hoboken: John Wiley & Sons, Inc.

    Book  Google Scholar 

  24. Belosludtsev K.N., Belosludtseva N.V., Agafonov A.V., Astashev M.E., Kazakov A.S., Saris N.-E.L., Mironova G.D. 2014. Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study. Biochim. Biophys. Acta. 1838 (10), 2600–2606.

  25. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1), 265–275.

    Article  CAS  Google Scholar 

  26. Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 3, 219–229.

    Article  Google Scholar 

  27. Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246.

    Article  CAS  Google Scholar 

  28. Dubinin M.V., Semenova A.A., Ilzorkina A.I., Mikheeva I.B., Yashin V.A., Penkov N.V., Vydrina V.A., Ishmuratov G.Y., Sharapov V.A., Khoroshavina E.I., Gudkov S.V., Belosludtsev K.N. 2020. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochim. Biophys. Acta. Biomembr. 1862 (10), 183383. https://doi.org/10.1016/j.bbamem.2020.183383

  29. Agafonov A., Gritsenko E., Belosludtsev K., Kovalev A., Gateau-Roesch O., Saris N.-E.L., Mironova G.D. 2003. A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochim. Biophys. Acta. 1609, 153–160.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by grant from the Russian Foundation for Basic Research (20-015-00124) and by the grant of the President of the Russian Federation (MK-61.2019.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Tenkov.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Mari State University.

Additional information

Translated by M. Dubinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenkov, K.S., Dubinin, M.V., Semenova, A.A. et al. Effect of Methyltriclosan on the Functioning of Isolated Rat Liver Mitochondria and Permeability of Liposomal Membranes. Biochem. Moscow Suppl. Ser. A 15, 147–155 (2021). https://doi.org/10.1134/S1990747821020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821020082

Keywords

Navigation