Skip to main content
Log in

Enzyme Catalyzed Synthesis of Water Soluble Mesalazine Oligomers and Evaluation of their Efficiency in Polypropylene Stabilization

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

5-Aminosalicylic acid, also known as mesalazine, was oxidized via biocatalytic pathway using Horseradish Peroxidase as catalyst. The spectroscopic measurement results indicated that amine and hydroxyl groups in monomer structure participated in polymerization reaction and carboxyl groups did not. The oxidation product consisted of a mixture of branched oligophenol and oligoaniline units and was well soluble in both organic and inorganic solvents including methanol, DMSO and H2O. The photoluminescence studies showed that both 5-aminosaliyclic acid and oxidation product exhibited green and blue light emission, respectively. Both compounds were subject to antioxidant assays. The oxidation product exhibited moderate antioxidant ability for all three assays. However, 5-aminosalicylic acid failed to chelate the ferrous ions. As antioxidant stabilizer for polypropylene, the efficiency of the oxidation product was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. Feng, X. Wang, D. Zhang, X. Xiao, and K. Qian, Appl. Phys. A: Mater. Sci. 125, 359 (2019).

    Article  Google Scholar 

  2. J. H. Fernández, E. Rayón, J. López, and M. P. Arrieta, Macromol. Mater. Eng. 304, 1900379 (2019).

    Article  Google Scholar 

  3. R. Gensler, C. J. G. Plummer, H. H. Kausch, E. Kramer, J. R. Pauquet, and H. Zweifel, Polym. Degrad. Stab. 67, 195 (2000).

    Article  CAS  Google Scholar 

  4. M. Peltzer, R. Navarro, J. López, and A. Jiménez, Polym. Degrad. Stab. 95, 1636 (2010).

    Article  CAS  Google Scholar 

  5. A. Nanni, D. Battegazzore, A. Frache, and M. Messori, Polym. Degrad. Stab. 165, 49 (2019).

    Article  CAS  Google Scholar 

  6. K. Zheng, H. Tang, Q. Chen, L. Zhang, Y. Wu, and Y. Cui, Polym. Degrad. Stab. 112, 27 (2015).

    Article  CAS  Google Scholar 

  7. Y. Gao, F. Jiang, L. Zhang, and Y. Cui, Polym. Bull. 73, 1343 (2016).

    Article  CAS  Google Scholar 

  8. A. Bilici, İ. H. Gecibesler, Y. Çoğal, and İ. Kaya, Ind. Eng. Chem. Res. 56, 9266 (2017).

    Article  CAS  Google Scholar 

  9. Y. Wu, F. Jiang, C. Chai, K. Zheng, Y. Cui, and L. Zhang, Polym. Adv. Technol. 29, 1518 (2018).

    Article  CAS  Google Scholar 

  10. S. Kobayashi, H. Uyama, and S. Kimura, Chem. Rev. 101, 3793 (2001).

    Article  CAS  Google Scholar 

  11. I. Yamaguchi and T. Yamamoto, React. Funct. Polym. 61, 43 (2004).

    Article  CAS  Google Scholar 

  12. M. S. Blois, Nat. Int. J. Sci. 181, 1199 (1958).

    CAS  Google Scholar 

  13. M. Oyaizu, Jpn. J. Nutr. 44, 307 (1986).

    Article  CAS  Google Scholar 

  14. T. C. P. Dinis, V. M. C. Madeira, and L. M. Almeida, Arch. Biochem. Biophys. 315, 161 (1994).

    Article  CAS  Google Scholar 

  15. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, Methods Enzymol. 299, 152 (1999).

    Article  CAS  Google Scholar 

  16. Y. Cheng and P. Desreumaux, World J. Gastroenterol. 11, 309 (2005).

    Article  CAS  Google Scholar 

  17. X. Qiu, J. Ma, K. Wang, and H. Zhang, OncoTargets Ther. 8, 1031 (2017).

    Article  Google Scholar 

  18. D. I. Metelitza and E. I. Karasyova, Biochemistry (Moscow) 67, 1048 (2002).

    Article  CAS  Google Scholar 

  19. Z. Zamiraei and J. Tanzadeh, Chem. Biol. Interface 6, 14 (2016).

    CAS  Google Scholar 

  20. Y. Peng, H. Liu, X. Zhang, Y. Li, and S. Liu, J. Polym. Sci., Part A Polym. Chem. 47, 1627 (2009).

    Article  CAS  Google Scholar 

  21. T. Oguchi, S. Tawaki, H. Uyama, and S. Kobayashi, Macromol. Rapid Commun. 20, 401 (1999).

    Article  CAS  Google Scholar 

  22. B. Andreiuk, A. Reisch, M. Lindecker, G. Follain, N. Peyriéras, J. G. Goetz, and A. S. Klymchenko, Small 13 (38), 1701582 (2017).

    Article  Google Scholar 

  23. W. Yang, C. Y. Pan, M. D. Luo, and H. B. Zhang, Biomacromolecules 11, 1840 (2010).

    Article  CAS  Google Scholar 

  24. M. Ranger, D. Rondeau, and M. Leclerc, Macromolecules 30, 7686 (1997).

    Article  CAS  Google Scholar 

  25. P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B: Condens. Matter Mater. Phys. 67, 064203 (2003).

    Article  Google Scholar 

  26. R. S. Premachandran, S. Banerjee, X.-K. Wu, V. T. John, G. L. McPherson, J. Akkara, M. Ayyagari, and D. Kaplan, Macromoleules 29, 6452 (1996).

    Article  CAS  Google Scholar 

  27. W. Liu, A. Anagnostopoulos, F. F. Bruno, K. Senecal, J. Kumar, S. Tripathy, and L. Samuelson, Synth. Met. 101, 738 (1999).

    Article  CAS  Google Scholar 

  28. X. Sun, R. Bai, Y. Zhang, Q. Wang, X. Fan, J. Yuan, L. Cui, and P. Wang, Appl. Biochem. Biotechnol. 171, 1673 (2013).

    Article  CAS  Google Scholar 

  29. A. A. Nerantzaki, C. G. Tsiafoulis, P. Charisiadis, V. G. Kontogianni, and I. P. Gerothanassis, Anal. Chim. Acta 688, 54 (2011).

    Article  CAS  Google Scholar 

  30. J. Pospíšil, Z. Horák, J. Pilar, N.C. Billingham, H. Zweifel, and S. Nešpurek, Polym. Degrad. Stab. 82, 145 (2003).

    Article  Google Scholar 

  31. M. Koutný, T. Václavkováa, L. Matisová-Rychlá, and J. Rychlá, Polym. Degrad. Stab. 93(8), 1515 (2008).

    Article  Google Scholar 

  32. W.W. Focke and I. van der Westhuizen, J. Therm. Anal. Calorim. 99, 285 (2010).

    Article  CAS  Google Scholar 

  33. E. Bendary, R. R. Francis, H. M. G. Ali, M. I. Sarwat, and S. El Hady, Ann. Agric. Sci. 58, 173 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bilici.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Bilici, Çogal, Y., Geçibesler, İ.H. et al. Enzyme Catalyzed Synthesis of Water Soluble Mesalazine Oligomers and Evaluation of their Efficiency in Polypropylene Stabilization. Polym. Sci. Ser. B 63, 710–721 (2021). https://doi.org/10.1134/S1560090421060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421060051

Navigation