Skip to main content
Log in

Structure and Noncovalent Interactions of Molybdenum Disulfide Monolayers in the Layered Organo-inorganic Compound with Tetramethylguanidine

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A layered compound with regularly alternating monolayers of MoS2 and N,N,N',N'-tetramethylguanidine (TMG) is synthesized by the reaction of monolayer dispersions of molybdenum disulfide containing anionic particles (MoS2)x with protonated TMG molecules. It is found by a combination of methods (X‑ray diffraction analysis adapted for turbostrate-disordered systems, high-resolution transmission electron microscopy, FT-IR spectroscopy, and quantum-chemical calculations by the density functional theory) that the structure of MoS2 layers with octahedrally coordinated molybdenum atoms forming chains of Mo–Mo bonds is stabilized in the compound. Noncovalent binding interactions occur between the MoS2 monolayers and TMG molecules including CH…S, NH…S, and N…S contacts with the predominant contribution of contacts of the first type to the binding energy (СIF file CCDC no. 1 990439).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Startsev, A.N. and Zakharov, I.I., Russ. Chem. Rev., 2003, vol. 72, p. 517.

    Article  CAS  Google Scholar 

  2. Tannous, J., Dassenoy, F., Lahouij, I., et al., Tribol. Lett., 2011, vol. 41, p. 55.

    Article  CAS  Google Scholar 

  3. Jariwala, D., Howell, S.L., Chen, K.-S., et al., Nano Lett., 2016, vol. 16, p. 497.

    Article  CAS  Google Scholar 

  4. Benck, J.D., Hellstern, T.R., Kibsgaard, J., et al., ACS Catal., 2014, vol. 4, p. 3957.

    Article  CAS  Google Scholar 

  5. Yoo, H.D., Li, Y., Liang, Y., et al., ChemNanoMat, 2016, vol. 2, p. 688.

    Article  CAS  Google Scholar 

  6. Kalantar-Zadeh, K. and Ou, J.Z., ACS Sensors, 2016, vol. 1, p. 5.

    Article  CAS  Google Scholar 

  7. Yin, F., Anderson, T., Panwar, N., et al., Nanotheranostics, 2018, vol. 2, p. 371.

    Article  Google Scholar 

  8. Ufer, K., Roth, G., Kleeberg, R., et al., Z. Kristallogr., 2004, vol. 219, p. 519.

    CAS  Google Scholar 

  9. Goloveshkin, A.S., Lenenko, N.D., Zaikovskii, V.I., et al., RSC Adv., 2015, vol. 5, p. 19206.

    Article  CAS  Google Scholar 

  10. Goloveshkin, A.S., Lenenko, N.D., Zaikovskii, V.I., et al., Langmuir, 2015, vol. 31, p. 8953.

    Article  CAS  Google Scholar 

  11. Ushakov, I.E., Goloveshkin, A.S., Lenenko, N.D., et al., Cryst. Growth Des., 2018, vol. 18, p. 5116.

    Article  CAS  Google Scholar 

  12. Dong, K., Zhang, S., and Wang, J., Chem. Commun., 2016, vol. 52, p. 6744.

    Article  CAS  Google Scholar 

  13. Berg, R.W., Riisager, A., Buu, O.N.V., et al., J. Phys. Chem. A, 2010, vol. 114, p. 13175.

    Article  CAS  Google Scholar 

  14. Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 1996, vol. 6, p. 15.

    Article  CAS  Google Scholar 

  15. Kresse, G. and Furthmüller, J., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  16. Grimme, S., J. Comput. Chem., 2006, vol. 27, p. 1787.

    Article  CAS  Google Scholar 

  17. Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, p. 1758.

    Article  CAS  Google Scholar 

  18. Gonze, X., Beuken, J.-M., Caracas, R., et al., Comput. Mater. Sci., 2002, vol. 25, p. 478.

    Article  Google Scholar 

  19. Galezowski, W., Jarczewski, A., Stanczyk, M., et al., J. Chem. Soc., Faraday Trans., 1997, vol. 93, p. 2515.

    Article  CAS  Google Scholar 

  20. Goloveshkin, A.S., Bushmarinov, I.S., Korlyukov, A.A., et al., Russ. J. Inorg. Chem., 2017, vol. 62, p. 729. https://doi.org/10.1134/S0036023617060080

    Article  CAS  Google Scholar 

  21. Naumov, N.G., Korlyukov, A.A., Piryazev, D.A., et al., Russ. Chem. Bull., 2013, vol. 62, p. 1852.

    Article  CAS  Google Scholar 

  22. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3−4, p. 170.

    Article  CAS  Google Scholar 

  23. Espinosa, E., Lecomte, C., and Molins, E., Chem. Phys. Lett., 1999, vol. 300, p. 745.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The structural studies were supported by the Ministry of Science and Higher Education of the Russian Federation using the scientific equipment of the Center of Investigation of Structure of Molecules of the Nesmeyanov Institute of Organoelement Compounds (Russian Academy of Sciences).

Funding

This work was supported by the Russian Science Foundation, project no. 20-13-00241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Golub’.

Ethics declarations

The authors declare that they have no conflicts of in-terest.

Additional information

The authors congratulate Academician I.L. Eremenko on his 70th jubilee

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, I.E., Goloveshkin, A.S., Lenenko, N.D. et al. Structure and Noncovalent Interactions of Molybdenum Disulfide Monolayers in the Layered Organo-inorganic Compound with Tetramethylguanidine. Russ J Coord Chem 46, 779–785 (2020). https://doi.org/10.1134/S1070328420090067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420090067

Keywords:

Navigation