Skip to main content
Log in

Effects of Periglacial Landforms on Soil Erosion Sensitivity Factors and Predicted by Artificial Intelligence Approach in Mount Cin, NE Turkey

  • SOIL EROSION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In this study, the differences in soil properties formed on various periglacial landforms located on slope land and high elevation so, this case create main problem against to soil erosion. The main aims of the study are to determine the physico-chemical properties and some soil erosion sensitivity parameters of the soils formed on the different periglacial landforms of Mount Cin and to predict those soil erosion sensitivity factor using artificial neural network (ANN). It was detected three different periglacial landforms on the Mount Cin. Stony earth circles spread over Cin Hill which is on the summit plain of Mount Cin, while non-sorted steps are located on the northern slopes of Cin Hill and Topkaya Hill. In addition, mud circle landforms spread to the south of Karaçakrak Hill. 25 soil samples were taken from the periglacial landforms in the study area. Afterwards, the physico-chemical properties of the samples were analysed in the laboratory. According to soil analysis from various periglacial landforms, the dominant soil texture is sandy loam: clay ranges from 5.61 to 16.79%, and sand from 48.61 to 76.72%. Also, the average soil erosion sensitivity factors, namely structure stability index (SSI), dispersion rate (DR), and crust formation (CF), were calculated at 29.65, 28.36, and 40.72%, respectively. Moreover, ANN is a model that can operate directly like the human brain. ANN uses the data of the current problem to make predictions. According to regression results of soil erosion sensitivity factors using ANN, the highest prediction rate was obtained for SSI (78%) and the lowest for DR (57%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Alaboz, O. Dengiz, S. Demir, and H. Şenol, “Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem,” Catena 207, 105634 (2021). https://doi.org/10.1016/j.catena.2021.105634

    Article  Google Scholar 

  2. R. Amundson, A. A. Berhe, J. W. Hopmans, C. Olson, A. E. Sztein, and D. L. Sparks, “Soil and human security in the 21st century,” Science 348, 6235 (2015). https://doi.org/10.1126/science.1261071

    Article  Google Scholar 

  3. T. Aşkın, F. Türkmen, and C. Tarakçıoğlu, “Evaluation of erosion risk in Ordu province central district soils with geostatistical techniques”, Ordu University, J. Soil Sci. Plant Nutr. 4 (2), 69–75 (2016).

    Google Scholar 

  4. N. Balcı and N. Özyuvacı, “The variation of the erosion tendency in the soils located in two different regions of Turkey depending on the parent material, aspect, land use and sampling depth,” J. Istanbul Univ. Fac. For., Ser. A, 2, 79–107 (1974).

    Google Scholar 

  5. M. Bartz, N. Klasen, A. Zander, D. Brill, G. Rixhon, M. Seeliger, J. Eiwanger, G. C. Weniger, A. Mikdad, and H. Brueckner, “Luminescence dating of ephemeral stream deposits around the Palaeolithic site of Ifrin’Ammar (Morocco),” Quat. Geochronol. 30, 460–465 (2015).

    Article  Google Scholar 

  6. G. R. Blacke and K. H. Hartge, “Bulk density,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (1986), Vol. 5, pp. 363–375.

  7. G. J. Bouyoucos, “Hydrometer method improved for making particle size analyses of soils,” Agron. J. 54 (5), 464–465 (1962).

    Article  Google Scholar 

  8. C. J. Bronick and R. Lal, “Soil structure and management: a review,” Geoderma 124, 3–22 (2005).

    Article  Google Scholar 

  9. C. Celilov and O. Dengiz, “Determination of spatial distribution of erosion susceptibility parameters with different interpolation methods: Turkey, Ilgaz National Park soils,” Turk. J. Agric. Res. 6 (3), 242–256 (2019).

    Google Scholar 

  10. K. G. Chaudhri, K. W. Brown, and C. B. Holder, “Reduction of crust impedence to simulated seedling emergence by the addition of manure,” Soil Sci. 122, 216–222 (1976).

    Article  Google Scholar 

  11. R. R. Colucci, C. Boccali, M. Zebre, and M. Guglielmin, “Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps,” Geomorphology 269, 112–121 (2016). https://doi.org/10.1016/j.geomorph.2016.06.039

  12. F. Costard, E. Gautier, P. Konstantinov, F. Bouchard, A. Séjourné, L. Dupeyrat, and A. Fedorov, “Thermal regime variability of islands in the Lena River near Yakutsk, eastern Siberia,” Permafrost and Periglacial Processes 33, 18–31 (2022).

    Article  Google Scholar 

  13. O. Çalışkan, G. Gürgen, E. Yılmaz, and S. Yeşilyurt, “Glacial morphology of the northeast of the Bolkar Mountains and debris covered glaciers,” Int. J. Hum. Sci. 9 (1), 890–910 (2012).

    Google Scholar 

  14. V. Dede, O. Dengiz, İ. Demirağ Turan, M. Türkeş, C. Gökçe, and S. Serin, “Determination of relationships between physico-chemical properties of soils formed in periglacial landforms of Ilgaz Mountains and some erosion susceptibility parameters,” Turk. J. Geogr. Sci. 18 (1), 99–123 (2020). https://doi.org/10.33688/aucbd.689755

    Article  Google Scholar 

  15. V. Dede, O. Dengiz, İ. Demirağ Turan, K. Zorlu, S. Pacci, and S. Serin, “Determination of erosion susceptibilities of soils formed on the periglacial landforms of Mount Ilgar and Its estimation using Artificial Neural Network (ANN),” Int. J. Geogr. Geogr. Educ. 47, 258–279 (2022). https://doi.org/10.32003/igge.1097942

    Article  Google Scholar 

  16. M. Demirci and A. Baltacı, “Prediction of suspended sediment in river using fuzzy logic and multilinear r-egression approaches,” Neural Computing and Applications 23 (1), 145–151 (2012).

    Article  Google Scholar 

  17. O. Dengiz, M. A. Özyazıcı, and M. Sağlam, “Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gökırmak catchment,” Paddy Water Environ. 13 (1), 1–10 (2015).

    Article  Google Scholar 

  18. O. Dengiz and O. Başkan, “Characterization of soil profile developmet on different ladscape in semi-arid region of Turkey a case study; Ankara-Soğulca catchment,” Anatolian J. Agric. Sci. 25 (2), 106–112 (2010).

    Google Scholar 

  19. O. Dengiz and H. Şenol, “Effect of toposequences on geochemical mass balance and clay mineral formation in soils developed on basalt parent material under subhumid climate condition,” Indian J. Geo-Mar. Sci. 47 (9), 1809–1820 (2018).

    Google Scholar 

  20. O. Doğan, M. E. Özel, H. Yıldırım, and N. Küçükçakar, “Erosion risk mapping of Dalaman Basin located in West Mediterranean Region using CORINE method”, in Proceedings of International Symposium on Desertification Konya-Turkey, 2000, pp.125–129.

  21. J. Drewes, S. Moreiras, and O. Korup, “Permafrost activity and atmospheric warming in the Argentinian Andes,” Geomorphology 323, 13–24 (2018).

    Article  Google Scholar 

  22. İ. Dursun and A. A. Babalık, “Determination of vegetation structure of Çatoluk forest pasture in Isparta province,” Turk. J. For. 19 (3), 233–239 (2018).

    Article  Google Scholar 

  23. S. Erinç, T. Bilgin, and M. Bener, “Periglacial landforms on Ilgaz,” J. Istanbul Univ. Inst. Geogr. 12, 90–99 (1961).

    Google Scholar 

  24. M. Fıçıcı and A. Soykan, “Comparative erosion analysis with MPSIAC & RUSLE Methods: Madra Dam Basin,” J. Geomorphological Res. 8, 28–47 (2022).

    Google Scholar 

  25. I. Gaubi, A. Chaabani, A. Ben Mammou, and M. H. Hamza, “A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia),” Nat. Hazards 86 (1), 219–239 (2017).

    Article  Google Scholar 

  26. Y. T. Ghebreiyessus, C. J. Gantzer, E. E. Alberts, and R. W. Lentz, “Soil erosion by concentrated flow: shear stress and bulk density,” Transactions of the ASAE 37 (6), 1791–1797 (1994).

    Article  Google Scholar 

  27. S. Grab, J. Knight, L. Mol, T. Botha, C. Carbutt, and S. Woodborne, “Periglacial landforms in the high Drakensberg, Southern Africa: morphogenetic associations with rock weathering rinds and shrub growth patterns,” Geografiska Annaler: Series A, Physical Geography 103 (3), 199–222 (2021). https://doi.org/10.1080/04353676.2020.1856625

    Article  Google Scholar 

  28. P. Gicheru, C. Gachene, J. Mbuvi, and E. Mare, “Effects of soil management practices and tillage systems on surface soil water conservation and crust formation on a sandy loam in semi-arid Kenya,” Soil Tillage Res. 75 (2), 173–184 (2004).

    Article  Google Scholar 

  29. S. Harriott and D. J. Evans, “Periglacial landforms of Dartmoor: an automated mapping approach to characterizing cold climate geomorphology,” Scott. Geogr. J., 1–28 (2022). https://doi.org/10.1080/14702541.2022.2093394

  30. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed. (Prentice Hall, Englewood Cliffs, New Jersey, 1999), pp. 117–173.

    Google Scholar 

  31. W. Huang and S. Foo, “Neural network modeling of salinity variation in Apalachicola River,” Water Res. 36 (1), 356–362 (2002).

    Article  Google Scholar 

  32. A. İnce, Master Thesis (Yıldız Technical Univ., Inst. Sci. Technol., 2018).

  33. M. L. Jackson, “Organic matter determination for soils,” in Soil Chemical Analysis (1958).

  34. S. Karaca, O. Dengiz, İ. Demirağ Turan, B. Özkan, M. Dedeoğlu, F. Gülser, S. Demir, B. Sargın, and A. Ay, “An assessment of pasture soil squality based on multi-indicator weighting approaches in 973 semi-arid ecosystem,” Ecol. Indic. 121, 107001 (2021).

    Article  Google Scholar 

  35. E. Kanar and O. Dengiz, “Determination of relationship between land use/land cover and some erodibility indexes in Madendere Watershed Soils,” Turk. J. Agric. Res. 2 (1), 15–27 (2015).

    Google Scholar 

  36. D. Karagöktaş and T. Yakupoğlu, “Relationships between erosiveness and soil properties in an area planned to be transformed into an erosion research area,” J. Soil Sci. Plant Nutr. 2 (1), 6–12 (2014).

    Google Scholar 

  37. M. R. Karaman, A. R. Brohi, N. M. Müftüoğlu, T. Öztaş, and M. Zengin, Sustainable Soil Fertility (Detay Publication, 2007), pp. 15, 29 (2007).

  38. W. D. Kemper and R. C. Rosenau, “Aggregate stability and size distribution,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd Ed. (1986). https://doi.org/10.2136/sssabookser5.1.2ed.c17.

  39. İ. Keskin, 1/ 100.000 Scale Geological Maps of Turkey, Ardahan E-49 and F-49 Sheets (MRE General Directorate, Department of Geological Studies, Turkey, 2013), No. 181.

  40. J. Knight, S. Harrison, and D. B. Jones, “Rock glaciers and the geomorphological evolution of deglacierizing mountains,” Geomorphology 324, 14–24 (2019).

    Article  Google Scholar 

  41. T. Kohonen, “Adaptive, associative, and self-organizing functions in neural computing,” Appl. Opt. 26 (23), 4910–4918 (1987).

    Article  Google Scholar 

  42. I. T. Kukkonen, E. Suhonen, E. Ezhova, H. Lappalainen, V. Gennadinik, O. Ponomareva, A. Gravis, V. Miles, M. Kulmala, V. Melnikov, and D. Drozdov, “Observations and modelling of ground temperature evolution in the discontinuous permafrost zone in Nadym, north-west Siberia,” Permafrost and Periglacial Processes 31 (2), 264–280 (2020).

    Article  Google Scholar 

  43. J. Kunz and C. Knesiel, “Three-dimensional investigation of an open-and a closed-system Pingo in northwestern Canada,” Permafrost and Periglacial Processes 32 (4), 541–557 (2021).

    Article  Google Scholar 

  44. R. Kızılkaya, V. Dede, O. Dengiz, and A. Ay, “Effect of soil properties formed on various periglacial landforms in Ilgaz Mountains on dehydrogenase enzyme activity,” Soil Sci. Soc. Turk. 7 (2), 121–127 (2019).

    Google Scholar 

  45. M. Lado, M. Ben Hur, and I. Shainberg, “Soil wetting and texture effects on aggregate stability, seal formation, and erosion,” Soil Sci. 68, 1992–1999 (2004).

    Article  Google Scholar 

  46. R. Lal, Soil Quality and Agricultural Sustainability (CRC Press, 1998).

    Google Scholar 

  47. M. W. Leo, “A rapid method for estimating structural stability of soils,” Soil Sci. 96 (5), 342–346 (1963).

    Article  Google Scholar 

  48. A. Lindgren, G. Hugelius, P. Kuhry, T. R. Christensen, and J. Vandenberghe, “GIS-based maps and area estimates of Northern Hemisphere permafrost extent during the Last Glacial Maximum,” Permafrost and Periglacial Processes 27 (1), 6–36 (2016).

    Article  Google Scholar 

  49. W. Lozinski, “Über die mechanische vermitterung der sandsteine im gemassigten klima,” Bulletin International de I’Academie des Sciences de Cracovie class des Sciences Mathematique et Naturalles 1, 1–25 (1909).

  50. Y. Ma, S. W. Ding, Y. S. Deng, Q. X. Wang, Y. Long, and S. W. Guo, “Study of soil fractal dimension characteristics and spatial variability in collapsing alluvial fan of Wuhuacounty (in Chinese),” J. Soil Water Conserv. 30 (5), 279–285 (2016).

    Google Scholar 

  51. B. Mater, Soil Geography (Çantay Publications, Turkey, 1998).

    Google Scholar 

  52. D. J. Mulla and A. B. McBratney, “Soil spatial variability,” in Handbook of Soil Science, Ed. by M. E. Sumner (CRS Press, Boca Raton, 2000), pp. 321–352.

    Google Scholar 

  53. L. Montanarella, “Agricultural policy: govern our soils,” Nature 528, 32–33 (2015).

    Article  Google Scholar 

  54. M. A. Nearing, Y. Xie, B. Liu, and Y. Ye, “Natural and anthropogenic rates of soil erosion,” Int. Soil Water Conserv. Res. 5 (2), 77–84 (2017).

    Article  Google Scholar 

  55. E. L. N. Ngatunga, I. Lal, and M. J. Singer, “Effect of surface management on runoff and soil erosion from some plot at Milangano, Tanzania,” Geoderma 33, 1–12 (1984).

    Article  Google Scholar 

  56. M. S. Odabaş, G. Kayhan, E. Ergun, and N. Şenyer, “Using artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s Wort Leaves,” Commun. Soil Sci. Plant Anal. 47 (2), 237–245 (2016).

    Article  Google Scholar 

  57. M. Oliva, M. Zebre, M. Guglielmin, P. Hughes, A. Çiner, G. Vieira, X. Bodin, N. Andres, et al, “Permafrost conditions in the Mediterranean region since the Last Glaciation,” Earth-Sci. Rev. 185, 397–436 (2018).

    Article  Google Scholar 

  58. T. Öztekin, B. Cemek, and L. Brown, “Pedotransfer functions for the hydraulic properties of layered soils,” J. Gaziosmanpaşa Univ. Fac. Agric. 24 (2), 77–86 (2007).

    Google Scholar 

  59. K. Öztürk and M. E. Şahin, “An overview of artificial neural networks and artificial intelligence,” Takvim-i Vekayi 6 (2), 25–36 (2018).

    Google Scholar 

  60. S. Pacci, N. S. Kaya, İ. Demirağ Turan, M. S. Odabaş, and O. Dengiz, “Comparative approach for soil quality index based on spatial multi-criteria analysis and artificial neural network,” Arabian J. Geosci. 15 (1), 1–15 (2022).

    Article  Google Scholar 

  61. C. Pieri, Fertilité des terres de savane, Bilan de trenteanné esderecherche et de développement agricole au sud du Sahara (IRAT, Paris, 1989).

    Google Scholar 

  62. D. Pimentel and N. Kounang, “Ecology of soil erosion in ecosystems,” Ecosystems 1 (5), 416–426 (1998).

    Article  Google Scholar 

  63. T. Saraç, “Artificial neural networks,” in Seminar Project (2004), pp. 22–75.

  64. S. Sarıcaoğlu, O. Dengiz, and K. Işık, “Assessment of biogeochemical-mineralogical characteristic and weathering indices of soils developed on basaltic parent material and toposequence under subhumid ecosystem,” Geomicrobiol. J. 38 (5), 451–465 (2021).

    Article  Google Scholar 

  65. F. Saygın, O. Dengiz, S. İç, and A. İmamoğlu, “Evaluation of the relationships between some physico-chemical soil properties and some erodibility parameters at the micro-catchment scale,” J. Artvin Çoruh Univ. Fac. For. 20 (1), 82–91 (2019).

    Google Scholar 

  66. S. Serin, Master Thesis (Bilecik Şeyh Edebali Univ., Institute of Social Sciences, Turkey, 2019).

  67. R. W. Simonson, “Modern concept of soil genesis,” Soil Sci. Soc. Am. J. 23 (2), 152–156 (1959).

    Article  Google Scholar 

  68. Soil Survey Staff, Keys to Soil Taxonomy (United States Department of Agriculture Natural Resources Conservation Service, Washington D.C., 2014).

  69. K. Sönmez, “The effects of phosphoric acid triple superphosphate and barn manure on aggregation, aggregate stability and breaking value in soils of Van region,” Professorship Thesis (Atatürk University Faculty of Agriculture, Turkey, 1982) (in press).

  70. R. Spaccini, J. S. C. M. Bagwu, C. A. Igwe, P. Conte, and A. Piccolo, “Carbohydrates and aggregation in lowland soils of Nigeria as influenced by organic inputs,” Soil Tillage Res. 75, 161–172 (2004).

    Article  Google Scholar 

  71. X. M. Suo, Y. T. Jiang, M. Yang, S. K. Li, K. R. Wang, and C. T. Wang, “Artificial neural network to predict leaf population chlorophyll content from cotton plant images,” Agric. Sci. China 9 (1), 38–45 (2010).

    Article  Google Scholar 

  72. M. Şen, “Engine performance, combustion and emission prediction for canola oil biodiesel blends using Artificial Neural Network,” Düzce Univ. J. Sci. Technol. 7 (3), 2045–2056 (2019).

    Google Scholar 

  73. Z. Şen, Principles of Artificial Neural Networks (Water Foundation Publications, Turkey, 2004).

    Google Scholar 

  74. T. Tunçay, O. Dengiz, and A. İmamoğlu, “Influence of toposequence on physical and mineralogical properties of soils developed on basaltic parent material under sub-humid terrestrial ecosystem,” J. Agric. Sci. 26, 104–116 (2020).

    Google Scholar 

  75. M. Türkeş, V. Dede, O. Dengiz, H. Şenol, and S. Serin, “Periglacial landforms and soil formation on summit of the Mount Ida (Kaz Dağı), Biga Peninsula-Turkey,” Phys. Geogr. (2022). https://doi.org/10.1080/02723646.2022.2091312

  76. T. Uxa, P. Mida, and M. Krizek, “Effect of climate on morphology and development of sorted circles and polygons,” Permafrost and Periglacial Processes 28, 663–674 (2017).

    Article  Google Scholar 

  77. J. R. Wallis and L. Stewan, “Erodibility of some California Midlands soils related to their cations exchange capacity,” J. Geophys. Res. 66 (4), 1225–1230 (1961).

    Article  Google Scholar 

  78. Y. Wang, L. Ran, N. Fang, and Z. Shi, “Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau,” Catena 167, 257–265 (2018).

    Article  Google Scholar 

  79. P. J. White, J. W.Crawford, M. C. Díaz Álvarez, and R. García Moreno, “Soil management for sustainable agriculture 2013,” Appl. Environ. Soil Sci. 2014, 536825 (2014).

    Article  Google Scholar 

  80. L. P. Wilding, “Spatial variability: its documentation, accommodation and implication to soil surveys,” in Soil Spatial Variability, Ed. by D. R. Nielsenand and J. Bouma (Pudoc, Wageningen, 1985), pp. 166–194.

    Google Scholar 

  81. S. Zhao, Y. Zhou, M. Wang, X. Xin, and F. Chen, “Thickness, porosity, and permeability prediction: comparative studies and application of the geostatistical modelling in an oilfield,” Environ. Syst. Res. 3 (1), 7 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dengiz.

Ethics declarations

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflict of interest related to the content of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

AUTHORS’ CONTRIBUTIONS

All authors contributed to the study’s conception and design. Methodology, Conceptualization, and Resources were done by V. Dede and O. Dengiz. Supervision was performed by O. Dengiz. Material preparation, investigation, and analysis were performed by İ.D. Turan, S. Serin and S. Pacci. All maps were created by S. Serin, and V. Dede. The first draft of the manuscript was written by V. Dede, O. Dengiz and İ.D. Turan and all authors performed fieldworks and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

ADDITIONAL INFORMATION

The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dede, V., Turan, İ.D., Dengiz, O. et al. Effects of Periglacial Landforms on Soil Erosion Sensitivity Factors and Predicted by Artificial Intelligence Approach in Mount Cin, NE Turkey. Eurasian Soil Sc. 55, 1857–1870 (2022). https://doi.org/10.1134/S106422932260138X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932260138X

Keywords:

Navigation