Skip to main content
Log in

Flexoelastic properties of polar liquid crystals

  • Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Structural properties of liquid crystals, such as the order parameters and the orientational, radial, and direct correlation distribution functions of polar liquid crystals 4-n-heptyloxy-4′-n-cyanobiphenyl (7OCB) and 4-n-hexyloxy-benzylidene-4′-n-aminobenzonitrile (HBAB) have been calculated using a combination of numerical simulation and statistical mechanics methods. It has been shown that the calculated values of both the Frank elastic coefficients K i (i = 1, 2, 3) corresponding to the splay, twist, and bend deformations and the flexoelectric coefficients e i (i = 1, 3) agree with the experimental data for 7OCB. The calculated values of the same coefficients for HBAB have been published for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Semenza, Nat. Photonics 1, 267 (2007).

    Article  ADS  Google Scholar 

  2. A. V. Komolkin, A. Laaksonen, and A. Maliniak, J. Chem. Phys. 101, 4103 (1994).

    Article  ADS  Google Scholar 

  3. A. V. Zakharov and A. Maliniak, Eur. Phys. J. E 4, 85 (2001).

    Article  Google Scholar 

  4. M. Ilk Capar and E. Cebe, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 061711 (2006).

    Article  Google Scholar 

  5. M. Wilson, Int. Rev. Phys. Chem. 24, 421 (2005).

    Article  Google Scholar 

  6. M. Cifelli, L. De Gaetani, G. Prompolini, and A. Tani, J. Phys. Chem. B 112, 9777 (2008).

    Article  Google Scholar 

  7. A. V. Zakharov, in Nuclear Magnetic Resonance Spectroscopy of Liquid Crystals, Ed. by R. Y. Dong (World Scientific, Singapore, 2009), p. 124.

    Google Scholar 

  8. M. J. Bradshow, E. P. Raynes, J. D. Bunning, and T. E. Faber, J. Phys. (Paris) 46, 1513 (1985).

    Google Scholar 

  9. H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, J. Mater. Chem. 11, 2709 (2001).

    Article  Google Scholar 

  10. R. B. Meyer, Phys. Rev. Lett. 22, 918 (1969).

    Article  ADS  Google Scholar 

  11. P. A. M. Murthy, V. A. Raghunathan, and N. V. Madhusudana, Liq. Cryst. 14, 483 (1993).

    Article  Google Scholar 

  12. L. M. Blinov, M. I. Barnik, M. Ozaki, N. M. Shtykov, and K. Yoshino, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 8091 (2000).

    Article  Google Scholar 

  13. L. M. Blinov, M. I. Barnik, H. Ohoka, M. Ozaki, and K. Yoshino, Jpn. J. Appl. Phys. 40, 5011 (2001).

    Article  ADS  Google Scholar 

  14. A. M. Somoza and P. Tarazona, Mol. Phys. 72, 911 (1991).

    Article  ADS  Google Scholar 

  15. A. V. Zakharov and R. Y. Dong, Eur. Phys. J. E 6, 3 (2001).

    Article  Google Scholar 

  16. A. V. Zakharov and A. A. Vakulenko, Kristallografiya 48(4), 738 (2003) [Crystallogr. Rep. 48 (4), 686 (2003)].

    Google Scholar 

  17. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995).

    Google Scholar 

  18. A. Poniwierski and J. Stecki, Mol. Phys. 38, 1931 (1979).

    Article  ADS  Google Scholar 

  19. M. D. Lipkin, S. A. Rice, and U. Mohanty, J. Chem. Phys. 82, 472 (1985).

    Article  ADS  Google Scholar 

  20. A. V. Zakharov, Physica A (Amsterdam) 175, 327 (1991).

    Article  ADS  Google Scholar 

  21. J. Steltzer, L. Longa, and H. Trebin, J. Chem. Phys. 103, 3098 (1995).

    Article  ADS  Google Scholar 

  22. P. I. C. Teixeira, V. M. Pergamenshchik, and T. Sluckin, Mol. Phys. 80, 1339 (1993).

    Article  ADS  Google Scholar 

  23. M. A. Osipov and S. Hess, Mol. Phys. 78, 1191 (1993).

    Article  ADS  Google Scholar 

  24. Ch. Gahwiller, Phys. Rev. Lett. 28, 1554 (1972).

    Article  ADS  Google Scholar 

  25. K. P. Gueu, E. Megnassan, and A. Proutiere, Mol. Cryst. Liq. Cryst. 132, 303 (1986).

    Article  Google Scholar 

  26. M. S. Sen, P. Brahman, S. K. Roy, D. K. Mukherjee, and S. B. Roy, Mol. Cryst. Liq. Cryst. 100, 327 (1983).

    Article  Google Scholar 

  27. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

    Article  MATH  ADS  Google Scholar 

  28. S. Hauptmann, T. Mosel, S. Reiling, and J. Brickmann, Chem. Phys. 208, 57 (1996).

    Article  Google Scholar 

  29. C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361 (1986).

    Article  Google Scholar 

  30. S. Mijajma, N. Nakamura, and H. Chihara, Mol. Cryst. Liq. Cryst. 89, 151 (1982).

    Article  Google Scholar 

  31. A. V. Zakharov, S. Romano, and A. Maliniak. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, R1142 (1999).

    Article  Google Scholar 

  32. H. J. Coles, B. Musgrave, M. J. Coles, and J. Willmott, J. Mater. Chem. 11, 2709 (2001).

    Article  Google Scholar 

  33. A. Ferrarini, C. Greco, and G. R. Luckhurst, J. Mater. Chem. 17, 1039 (2007).

    Article  Google Scholar 

  34. A. Mazzulla, F. Cinchi, and J. R. Sambles, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 021708 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vakulenko.

Additional information

Original Russian Text © M.Ilk Capar, A. Nar, A.V. Zakharov, A A. Vakulenko, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 2, pp. 406–411.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capar, M.I., Nar, A., Zakharov, A.V. et al. Flexoelastic properties of polar liquid crystals. Phys. Solid State 53, 435–441 (2011). https://doi.org/10.1134/S1063783411020077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411020077

Keywords

Navigation