Skip to main content
Log in

Entropy Signatures of Topological Phase Transitions

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We review the behavior of the entropy per particle in various two-dimensional electronic systems. The entropy per particle is an important characteristic of any many-body system that tells how the entropy of the ensemble of electrons changes if one adds one more electron. Recently, it has been demonstrated how the entropy per particle of a two-dimensional electron gas can be extracted from the recharging current dynamics in a planar capacitor geometry. These experiments pave the way to the systematic studies of entropy in various crystal systems including novel two-dimensional crystals such as gapped graphene, germanene, and silicene. Theoretically, the entropy per particle is linked to the temperature derivative of the chemical potential of the electron gas by the Maxwell relation. Using this relation, we calculate the entropy per particle in the vicinity of topological transitions in various two-dimensional electronic systems. We show that the entropy experiences quantized steps at the points of Lifshitz transitions in a two-dimensional electron gas with a parabolic energy spectrum. In contrast, in doubled-gapped Dirac materials, the entropy per particle demonstrates characteristic spikes once the chemical potential passes through the band edges. The transition from a topological to trivial insulator phase in germanene is manifested by the disappearance of a strong zero-energy resonance in the entropy per particle dependence on the chemical potential. We conclude that studies of the entropy per particle shed light on multiple otherwise hidden peculiarities of the electronic band structure of novel two-dimensional crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. Spin—orbit interaction has been included by, first, solving the radial Dirac equation for each isolated atom and, second, by reducing the four-component Dirac spinors to two-component Pauli spinors in order to generate pseudopotentials with two-component projectors.

REFERENCES

  1. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  3. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

    Article  ADS  Google Scholar 

  4. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  5. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  6. Y. M. Blanter, A. V. Pantsulaya, and A. A. Varlamov, Phys. Rev. B 45, 6267 (1992).

    Article  ADS  Google Scholar 

  7. Y. M. Blanter, M. I. Kaganov, A. V. Pantsulaya, and A. A. Varlamov, Phys. Rep. 245, 159 (1994).

    Article  ADS  Google Scholar 

  8. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  9. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  10. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  11. B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  12. F. Bechstedt, L. Matthes, P. Gori, and O. Pulci, Appl. Phys. Lett. 100, 261906 (2012).

    Article  ADS  Google Scholar 

  13. L. Stille, C. J. Tabert, and E. J. Nicol, Phys. Rev. B 86, 195405 (2012).

    Article  ADS  Google Scholar 

  14. A. Y. Kuntsevich, Y. V. Tupikov, V. M. Pudalov, and I. S. Burmistrov, Nat. Commun. 6, 7298 (2015).

    Article  ADS  Google Scholar 

  15. A. A. Varlamov and A. V. Kavokin, Europhys. Lett. 103, 47005 (2013).

    Article  ADS  Google Scholar 

  16. C. Goupil, W. Seifert, K. Zabrocki, E. Muller, and G. J. Snyder, Entropy 13, 1481 (2011).

    Article  ADS  Google Scholar 

  17. A. A. Varlamov, A. V. Kavokin, and Y. M. Galperin, Phys. Rev. B 93, 155404 (2016).

    Article  ADS  Google Scholar 

  18. V. Y. Tsaran, A. Kavokin, S. Sharapov, A. Varlamov, and V. Gusynin, Sci. Rep. 7, 10271 (2017).

    Article  ADS  Google Scholar 

  19. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  20. C. W. J. Beenakker and H. van Houten, in Solid State Physics, Ed. by H. Ehrenreich and D. Turnbull (Academic, Boston, 1991), Vol. 44, p. 1.

    Google Scholar 

  21. J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 50, 1760 (1994).

    Article  ADS  Google Scholar 

  22. G. D. Mahan, Many-Particle Physics (Kluwer Academic, Plenum, New York, Boston, Dodrecht, London, Moscow, 1981), p. 380.

    Google Scholar 

  23. D. S. Novikov, Phys. Rev. B 79, 235304 (2009).

    Article  ADS  Google Scholar 

  24. N. V. Zavaritskii and Z. D. Kwon, JETP Lett. 39, 71 (1984).

    ADS  Google Scholar 

  25. N. V. Zavaritskii and I. M. Suslov, Sov. Phys. JETP 60, 1243 (1984).

    Google Scholar 

  26. B. I. Ivlev and G. M. Eliashberg, JETP Lett. 13, 333 (1971).

    ADS  Google Scholar 

  27. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, Amsterdam, 1989), Ch. 19.5, p. 414.

    Google Scholar 

  28. D. Dutton, Phys. Rev. 112, 785 (1958).

    Article  ADS  Google Scholar 

  29. B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, et al., Science (Washington, DC, U. S.) 340, 1427 (2016).

    Article  Google Scholar 

  30. C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, et al., Nat. Phys. 10, 451 (2014).

    Article  Google Scholar 

  31. Z.-G. Chen, Z. Shi, W. Yang, X. Lu, Y. Lai, H. Yan, F. Wang, G. Zhang, and Z. Li, Nat. Commun. 5, 4461 (2014).

    Article  Google Scholar 

  32. R. V. Gorbachev, J. Song, G. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. Levitov, et al., Science (Washington, DC, U. S.) 346, 448 (2014).

    Article  ADS  Google Scholar 

  33. A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voone, S. Vizzini, B. Aufray, and H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012).

    Article  ADS  Google Scholar 

  34. A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M. I. Katsnelson, et al., J. Phys.: Condens. Matter 27, 443002 (2015).

    ADS  Google Scholar 

  35. C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).

    Article  ADS  Google Scholar 

  36. C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430 (2011).

    Article  ADS  Google Scholar 

  37. E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108 (2002).

    Article  ADS  Google Scholar 

  38. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, Amsterdam, 1988).

    Google Scholar 

  39. S. G. Sharapov and A. A. Varlamov, Phys. Rev. B 86, 035430 (2012).

    Article  ADS  Google Scholar 

  40. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Nat. Nanotechnol. 10, 227 (2015).

    Article  ADS  Google Scholar 

  41. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, et al., Nat. Phys. 7, 701 (2011).

    Article  Google Scholar 

  42. B. N. Narozhny, I. V. Gornyi, A. D. Mirlin, and J. Schmalian, Ann. Phys. 529, 1700043 (2017).

    Article  Google Scholar 

  43. A. Lucas and K. C. Fong, J. Phys.: Condens. Matter 30, 053001 (2018).

    ADS  Google Scholar 

  44. V. O. Shubnyi, V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, J. Low Temp. Phys. 44, 561 (2018).

    Article  Google Scholar 

  45. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  46. A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi, N. D. Drummond, and V. Fal’ko, 2D Mater. 2, 049501 (2015).

  47. E. Cappelluti, R. Roldan, J. A. Silva-Guillen, P. Ordejon, and F. Guinea, Phys. Rev. B 88, 075409 (2013).

    Article  ADS  Google Scholar 

  48. H. Rostami, A. G. Moghaddam, and R. Asgari, Phys. Rev. B 88, 085440 (2013).

    Article  ADS  Google Scholar 

  49. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Phys. Rev. B 88, 085433 (2013).

    Article  ADS  Google Scholar 

  50. E. Ridolfi, D. Le, T. S. Rahman, E. R. Mucciolo, and C. H. Lewenkopf, J. Phys.: Condens. Matter 27, 365501 (2015).

    Google Scholar 

  51. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys, Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  52. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).

    Article  Google Scholar 

  53. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).

    Article  Google Scholar 

  54. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).

    Article  ADS  Google Scholar 

  55. Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y.-T. Hsu, L.-J. Li, W. Guo, and S. P. Lau, ACS Nano 7, 7126 (2013).

    Article  Google Scholar 

  56. A. Castellanos-Gomez, R. Roldan, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, and G. A. Steele, Nano Lett. 13, 5261 (2013).

    Article  Google Scholar 

  57. C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, et al., Phys. Rev. B 88, 121301 (2013).

    Article  ADS  Google Scholar 

  58. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, Nano Res. 8, 2562 (2015).

    Article  Google Scholar 

  59. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, et al., Nat. Mater. 12, 850 (2013).

    Article  ADS  Google Scholar 

  60. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, et al., Nat. Nanotechnol. 8, 100 (2013).

    Article  ADS  Google Scholar 

  61. H. Rostami, R. Roldan, E. Cappelluti, R. Asgari, and F. Guinea, Phys. Rev. B 88, 085433 (2013).

    Article  Google Scholar 

  62. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon Press, New York, 1986).

  63. A. Scholz, T. Stauber, and J. Schliemann, Phys. Rev. B 88, 035135 (2013).

    Article  ADS  Google Scholar 

  64. A. Iurov, G. Gumbs, D. Huang, and G. Balakrishnan, Phys. Rev. B 96, 245403 (2017).

    Article  ADS  Google Scholar 

  65. A. Iurov, G. Gumbs, and D. Huang, arXiv:1711.08485.

  66. A. A. Varlamov, V. Egorov, and A. Pantsulaya, Adv. Phys. 38, 469 (1989).

    Article  ADS  Google Scholar 

  67. D. Grassano, O. Pulci, V. O. Shubnyi, S. G. Sharapov, V. P. Gusynin, A. V. Kavokin, and A. A. Varlamov, Phys. Rev. B 97, 205442 (2018).

    Article  ADS  Google Scholar 

  68. N. D. Drummond, V. Zolyomi, and V. I. Fal’ko, Phys. Rev. B 85, 075423 (2012).

    Article  ADS  Google Scholar 

  69. M. Ezawa, New J. Phys. 14, 033003 (2012).

    Article  ADS  Google Scholar 

  70. L. Matthes and F. Bechstedt, Phys. Rev. B 90, 165431 (2014).

    Article  ADS  Google Scholar 

  71. M. Ezawa, J. Phys. Soc. Jpn. 84, 121003 (2015).

    Article  ADS  Google Scholar 

  72. C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.-C. Cheng, and J.-Z. Chen, Phys. Rev. Lett. 107, 186602 (2011).

    Article  ADS  Google Scholar 

  73. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  74. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

    Google Scholar 

  75. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  76. D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    Article  ADS  Google Scholar 

  77. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  78. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    Article  ADS  Google Scholar 

  79. A. dal Corso and A. M. Conte, Phys. Rev. B 71, 115106 (2005).

    Article  ADS  Google Scholar 

  80. A. M. Conte, S. Fabris, and S. Baroni, Phys. Rev. B 78, 014416 (2008).

    Article  ADS  Google Scholar 

  81. L. Matthes, O. Pulci, and F. Bechstedt, J. Phys.: Condens. Matter 25, 395305 (2013).

    Google Scholar 

  82. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  83. L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  84. R. Roy, Phys. Rev. B 79, 195321 (2009).

    Article  ADS  Google Scholar 

  85. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  86. A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

    Article  ADS  Google Scholar 

  87. R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84, 075119 (2011).

    Article  ADS  Google Scholar 

  88. D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig, and A. A. Soluyanov, Phys. Rev. B 95, 075146 (2017).

    Article  ADS  Google Scholar 

  89. H.-R. Chang, J. Zhou, H. Zhang, and Y. Yao, Phys. Rev. B 89, 201411 (2014).

    Article  ADS  Google Scholar 

  90. I. A. Luk’yanchuk, A. A. Varlamov, and A. V. Kavokin, Phys. Rev. Lett. 107, 016601 (2011).

    Article  ADS  Google Scholar 

  91. J. I. Kapusta and C. Gale, Finite-Temperature Field Theory Principles and Applications (Cambridge Univ. Press, Cabmridge, 2006).

  92. S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B 69, 075104 (2004).

    Article  ADS  Google Scholar 

  93. S. G. Sharapov, J. Phys. A 48, 365002 (2015).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.O. Slobodeniuk for illuminating discussion. We acknowledge the support from the HORIZON 2020 RISE “CoExAN” project (GA644076). A. V. K. acknowledges support from the St. Petersburg State University for the research grant 11.34.2.2012. S. G. Sh. and V. P. G. acknowledge a partial support by the National Academy of Sciences of Ukraine (projects nos. 0117U000236 and 0116U003191) and by its Program of Fundamental Research of the Department of Physics and Astronomy (project no. 0117U000240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Varlamov.

Additional information

Contribution for the JETP special issue in honor of L.P. Pitaevskii’s 85th birthday

The article is published in the original.

Appendices

APPENDIX A

1.1 Derivation of Eqs. (11) and (12)

Using Eqs. (10) and (9), we can cast the derivatives (∂n/∂μ)T and (∂n/∂T)μ in the form

$$\begin{gathered} {{\left( {\frac{{\partial n}}{{\partial \mu }}} \right)}_{T}} = \frac{{m{\text{*}}}}{{2\pi {{\hbar }^{2}}}} \\ \times \sum\limits_j^{} {\int\limits_{ - \infty }^\infty {\frac{{dz}}{{{{{\cosh }}^{2}}z}}\left[ {\frac{1}{2} + \frac{1}{\pi }\arctan (az + {{b}_{j}})} \right]} } , \\ \end{gathered} $$
((A.1))
$$\begin{gathered} {{\left( {\frac{{\partial n}}{{\partial T}}} \right)}_{\mu }} = \frac{{m{\text{*}}}}{{\pi {{\hbar }^{2}}}} \\ \times \sum\limits_j^{} {\int\limits_{ - \infty }^\infty {\frac{{zdz}}{{{{{\cosh }}^{2}}z}}\left[ {\frac{1}{2} + \frac{1}{\pi }\arctan (az + {{b}_{j}})} \right]} } , \\ \end{gathered} $$
((A.2))

where a ≡ 2T/γ, bj ≡ (μ – Ej)/γ. Therefore, one is left with the integrals

$$\begin{gathered} I(a,b) = \int\limits_{ - \infty }^\infty {\frac{{dzz}}{{{{{\cosh }}^{2}}z}}\arctan (az + b),} \\ J(a,b) = \int\limits_{ - \infty }^\infty {\frac{{dz}}{{{{{\cosh }}^{2}}z}}\arctan (az + b),} \\ \end{gathered} $$
((A.3))

where a > 0.

As an example, let us consider the integral I(a, b), which is an even function in b. Clearly,

$$I(a,b \to \infty ) = 0.$$
((A.4))

It is worth evaluating the derivative

$$\frac{{\partial I(a,b)}}{{\partial b}} = \int\limits_{ - \infty }^\infty {\frac{{dx}}{{{{{\cosh }}^{2}}x}}\frac{x}{{{{{(ax + b)}}^{2}} + 1}}.} $$
((A.5))

Since

$$\tanh x = 2\sum\limits_{n = 0}^\infty {\frac{x}{{c_{n}^{2} + {{x}^{2}}}},\quad {{c}_{n}} = \pi (n + 1{\text{/}}2),} $$
((A.6))

by differentiation over x, one obtains

$$\begin{gathered} \frac{1}{{{{{\cosh }}^{2}}x}} = 2\sum\limits_{n = 0}^\infty {\left[ {\frac{{2c_{n}^{2}}}{{{{{(c_{n}^{2} + {{x}^{2}})}}^{2}}}} - \frac{1}{{c_{n}^{2} + {{x}^{2}}}}} \right],} \\ {{c}_{n}} = \pi (n + 1{\text{/}}2). \\ \end{gathered} $$
((A.7))

Therefore,

$$\begin{gathered} \frac{{\partial I(a,b)}}{{\partial b}} = 2\sum\limits_{n = 0}^\infty {\int\limits_{ - \infty }^\infty {\frac{{dxx}}{{{{{(ax + b)}}^{2}} + 1}}} } \\ \times \left[ {\frac{{2c_{n}^{2}}}{{{{{(c_{n}^{2} + {{x}^{2}})}}^{2}}}} - \frac{1}{{c_{n}^{2} + {{x}^{2}}}}} \right] \\ = 2\pi b\sum\limits_{n = 0}^\infty {\frac{{1 + {{b}^{2}} - {{a}^{2}}c_{n}^{2}}}{{{{{[{{b}^{2}} + {{{(1 + a{{c}_{n}})}}^{2}}]}}^{2}}}}} \\ = \frac{2}{{\pi {{a}^{2}}}}\operatorname{Im} \left[ {(1 - ib)\Psi '\left( {\frac{1}{2} + \frac{{1 - ib}}{{\pi a}}} \right)} \right]. \\ \end{gathered} $$
((A.8))

Integrating Eq. (A.8) over b, we get

$$\begin{gathered} I(a,b) = \frac{2}{a}\operatorname{Re} \left[ {(1 + ib)\Psi \left( {\frac{1}{2} + \frac{{1 + ib}}{{\pi a}}} \right)} \right. \\ \,\left. { - \pi a\ln \Gamma \left( {\frac{1}{2} + \frac{{1 + ib}}{{\pi a}}} \right)} \right] + C(a). \\ \end{gathered} $$
((A.9))

At b ≫ 1, we find that

$$\begin{gathered} I(a,b) \simeq \frac{2}{a}\operatorname{Re} \left[ {ib + \left( {1 - \frac{{\pi a}}{2}\ln {{{(2\pi )}}_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}} \right.} \right. \\ \,\left. {\left. { - \frac{{i{{\pi }^{2}}{{a}^{2}}}}{{12b}} + O\left( {\frac{1}{{{{b}^{2}}}}} \right)} \right)} \right] + C(a). \\ \end{gathered} $$
((A.10))

Using the Eq. (A.4), one obtains

$$C(a) = \frac{2}{a}\left( { - 1 + \frac{{\pi a}}{2}\ln (2\pi )} \right).$$
((A.11))

The results of the aforementioned procedure and a similar procedure for J(a, b) read as

$$\begin{gathered} I(a,b) = \frac{2}{a}\operatorname{Re} \left[ {(1 + ib)\Psi \left( {\frac{1}{2} + \frac{{1 + ib}}{{\pi a}}} \right) - 1} \right. \\ \left. {\, - \pi a\ln \Gamma \left( {\frac{1}{2} + \frac{{1 + ib}}{{\pi a}}} \right) + \frac{{\pi a}}{2}\ln (2\pi )} \right], \\ \end{gathered} $$
((A.12))
$$J(a,b) = 2\operatorname{Im} \left[ {\Psi \left( {\frac{1}{2} + \frac{{1 + ib}}{{\pi a}}} \right)} \right].$$
((A.13))

Using the above auxiliary integrals, one easily obtains Eqs. (11) and (12). The limiting case γ → 0 follows from the properties of the Ψ-function:

$$\begin{gathered} \operatorname{Im} \left[ {\Psi \left( {\frac{1}{2} + ix} \right)} \right] = \frac{\pi }{2}\tanh (\pi x), \\ \Psi (z) \simeq \ln z + \mathcal{O}\left( {\frac{1}{z}} \right),\quad {\text{|}}z{\text{|}} \gg 1. \\ \end{gathered} $$
((A.14))

APPENDIX B

2.1 Gapped Dirac Materials: Details of Calculations

Relationship between the carrier density and carrier imbalance.In a relativistic theory, for example, in QED, the number of electrons or positrons is not conserved, while a conserving number operator is required in order to build the statistical density matrix [91]. In QED, the conserved quantity is the difference of the numbers of positively and negatively charged particles: electrons and positrons.

In the Dirac materials, the “relativistic” nature of carriers is encoded in the symmetric DOS function, D(ε) = D(–ε). Accordingly, it is convenient to operate with the difference between the densities of electrons and holes instead of the total density of electrons [92, 93]. The difference is given by

$$\begin{gathered} n(T,\,\,\mu ) = \int\limits_{ - \infty }^\infty {d\varepsilon D(\varepsilon )[{{f}_{{{\text{FD}}}}}(\varepsilon - \mu )\theta (\varepsilon )} \\ \, - [1 - {{f}_{{{\text{FD}}}}}(\varepsilon - \mu )]\theta ( - \varepsilon )] \\ = - \frac{1}{2}\int\limits_{ - \infty }^\infty {d\varepsilon D(\varepsilon )\tanh \frac{{\varepsilon - \mu }}{{2T}}.} \\ \end{gathered} $$
((B.1))

The last equation can be rewritten in the form of Eq. (3). One can verify that the carrier imbalance n(T, μ) and the total carrier density ntot(T, μ) are related by the expression n(T, μ) = ntot(T, μ) – nhf, where nhf is the density of particles for a half-filled band (in the lower Dirac cone), nhf = \(\int_{ - \infty }^\infty d \)εD(ε)θ(–ε). Consequently, there is no difference whether the entropy per particle is defined via the total carrier density ntot or the carrier imbalance n.

Expressions for ∂n/∂T and ∂n/∂μ. The first temperature derivative in Eq. (5) depends on whether the chemical potential μ hits the discontinuity of the DOS D(ε) given by Eq. (16). Differentiating Eq. (18) over the temperature, one obtains

$$\begin{gathered} \frac{{\partial n(T,\,\,\mu )}}{{\partial T}} = \frac{{{\text{sgn}}(\mu )}}{{4T}} \\ \times \int\limits_{ - \infty }^\infty {d\varepsilon D(\varepsilon )} \left[ {\frac{{\varepsilon - \,{\text{|}}\mu {\text{|}}}}{{2T}}\frac{1}{{{{{\cosh }}^{2}}\frac{{\varepsilon - \,{\text{|}}\mu {\text{|}}}}{{2T}}}} - \frac{{\varepsilon + \,{\text{|}}\mu {\text{|}}}}{{2T}}\frac{1}{{{{{\cosh }}^{2}}\frac{{\varepsilon + \,{\text{|}}\mu {\text{|}}}}{{2T}}}}} \right]. \\ \end{gathered} $$

Changing the variable ε = 2Tx ± |μ| in two terms and changing the limits of integration, one obtains

$$\begin{gathered} \frac{{\partial n(T,\,\,\mu )}}{{\partial T}} = {\text{sgn}}(\mu )\int\limits_0^\infty {dx[D({\text{|}}\mu {\text{|}} + 2Tx)} \\ \, - D({\text{|}}\mu {\text{|}} - 2Tx)]\frac{x}{{{{{\cosh }}^{2}}x}}. \\ \end{gathered} $$
((B.3))

If the DOS, D(E) has a continuous derivative at the point E = |μ|, where Δi < |μ| < Δi+ 1, one can expand D(|μ| + 2Tx) – D(|μ| – 2Tx) ≃ 4TxD'(|μ|). Then integrating over x, we arrive at Eq. (19):

$$\begin{gathered} \frac{{\partial n(T,\,\,\mu )}}{{\partial T}} \simeq 4T{\text{sgn}}(\mu )D'({\text{|}}\mu {\text{|}})\int\limits_0^\infty {\frac{{{{x}^{2}}dx}}{{{{{\cosh }}^{2}}x}}} \\ = {\text{sgn}}(\mu )D'({\text{|}}\mu {\text{|}})\frac{{{{\pi }^{2}}}}{3}T. \\ \end{gathered} $$
((B.4))

On the other hand, at the discontinuity points μ = ±ΔJ at T → 0, we arrive at Eq. (20).

The second derivative in Eq. (5) in the zero temperature limit is just the DOS. Indeed, we have

$$\begin{gathered} \frac{{\partial \mu (T,\,\,\mu )}}{{\partial \mu }} = \frac{1}{{8T}}\int\limits_{ - \infty }^\infty {d\varepsilon D(\varepsilon )} \\ \times \left[ {\frac{1}{{{{{\cosh }}^{2}}\frac{{\varepsilon + \mu }}{{2T}}}} + \frac{1}{{{{{\cosh }}^{2}}\frac{{\varepsilon - \mu }}{{2T}}}}} \right] \to D(\mu ), \\ T \to 0. \\ \end{gathered} $$
((B.5))

This is because (1/4T)cosh–2(x/2T) → δ(x) for x → 0. Substituting the DOS given by Eq. (16) to Eq. (B.5), we arrive at Eq. (21).

The carrier imbalance for a gapped graphene is given by Eq. (23). The corresponding derivatives are given by Eqs. (24) and (25):

$$\begin{gathered} {{\left( {\frac{{\partial n}}{{\partial \mu }}} \right)}_{T}} = \frac{2}{{\pi {{\hbar }^{2}}{v}_{{\text{F}}}^{2}}}\left\{ {\frac{\Delta }{2}\left( {\tanh \frac{{\mu - \Delta }}{{2T}} - \tanh \frac{{\mu + \Delta }}{{2T}}} \right)} \right. \\ \,\left. { + T\left[ {\ln \left( {2\cosh \frac{{\mu - \Delta }}{{2T}}} \right) + \ln \left( {2\cosh \frac{{\mu + \Delta }}{{2T}}} \right)} \right]} \right\}, \\ \end{gathered} $$
((B.6))
$$\begin{gathered} {{\left( {\frac{{\partial n}}{{\partial T}}} \right)}_{\mu }} = \frac{2}{{\pi {{\hbar }^{2}}{v}_{{\text{F}}}^{2}}}\left\{ {2\Delta \ln \frac{{1 + \exp \left( {\frac{{\mu - \Delta }}{T}} \right)}}{{1 + \exp \left( { - \frac{{\mu + \Delta }}{T}} \right)}}} \right. \\ \, + 2T{\text{L}}{{{\text{i}}}_{2}}\left[ { - \exp \left( { - \frac{{\mu + \Delta }}{T}} \right)} \right] \\ \end{gathered} $$
$$\, - 2T{\text{L}}{{{\text{i}}}_{2}}\left[ { - \exp \left( {\frac{{\mu - \Delta }}{T}} \right)} \right]$$
((B.7))
$$\begin{gathered} \, - \mu \ln \left( {2\cosh \frac{{\mu - \Delta }}{{2T}}} \right) - \mu \ln \left( {2\cosh \frac{{\mu + \Delta }}{{2T}}} \right) \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} + \frac{\Delta }{T}\frac{{\mu \sinh (\Delta {\text{/}}T) + \Delta \sinh (\mu {\text{/}}T)}}{{\cosh (\Delta {\text{/}}T) + \cosh (\mu {\text{/}}T)}}} \right\}. \\ \end{gathered} $$

Equations (27)–(29) and (32) are obtained using the low-temperature expansions of the derivatives, Eqs. (24) and (25).

We also provide the corresponding expressions for the zero-gap graphene and 2DEG. In the case Δ = 0, Eq. (23) reduces to

$$n(T,\mu ) = \frac{{2{{T}^{2}}}}{{\pi {{\hbar }^{2}}{v}_{{\text{F}}}^{2}}}[{\text{L}}{{{\text{i}}}_{2}}( - {{e}^{{ - \mu /T}}}) - {\text{L}}{{{\text{i}}}_{2}}( - {{e}^{{\mu /T}}})].$$
((B.8))

Using Eq. (5), we obtain the general expression

$$\begin{gathered} {{\left( {\frac{{\partial \mu }}{{\partial T}}} \right)}_{\mu }} = \frac{\mu }{T} - \frac{1}{{\ln \left( {2\cosh \frac{\mu }{{2T}}} \right)}} \\ \, \times [{\text{L}}{{{\text{i}}}_{2}}( - {{e}^{{ - \mu /T}}}) - {\text{L}}{{{\text{i}}}_{2}}( - {{e}^{{\mu /T}}})]. \\ \end{gathered} $$
((B.9))

In the 2DEG in the presence of Zeeman splitting considered in the Supplementary material in [14], the carrier density reads

$$n(\mu ,T)\, = \,\frac{m}{{4\pi }}T[{\text{ln}}(1 + {{e}^{{(\mu + Z)/T}}}) + {\text{ln}}(1 + {{e}^{{(\mu - Z)/T}}})].$$
((B.10))

Here, Z is the Zeeman splitting energy and m is the carrier mass. One can show that the entropy per particle in this case also obeys the quantization rule

$$\begin{gathered} {{\left. {\frac{{\partial S}}{{\partial n}}} \right|}_{{\mu = - Z}}} = 2\ln 2, \\ {{\left. {\frac{{\partial S}}{{\partial n}}} \right|}_{{\mu = Z}}} = \frac{{2\ln 2}}{3},\quad T \to 0. \\ \end{gathered} $$
((B.11))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galperin, Y.M., Grassano, D., Gusynin, V.P. et al. Entropy Signatures of Topological Phase Transitions. J. Exp. Theor. Phys. 127, 958–983 (2018). https://doi.org/10.1134/S1063776118110134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118110134

Navigation