Skip to main content
Log in

Methylene Blue Attenuates Impaired Cognitive Functions and Reduces Hippocampal Aβ Levels and Oxidative Stress in D-Galactose-Induced Alzheimer’s Disease Mouse Model

  • ANIMAL AND HUMAN PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Methylene blue (MB) has a long story of use and has been employed for various diseases, however, most of its current rekindled research is related to its function in the mitochondria. MB is gaining interest as a possible treatment because mitochondrial dysfunction is an apparent unifying pathogenic characteristic of a variety of neurodegenerative conditions. Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by impairment of cognitive functions. This study aims to investigate whether MB treatment improves impaired cognitive functions and reduces hippocampal amyloid-β levels and oxidative stress in a D-galactose-induced AD mouse model. Twenty-four wild-type Balb/c mice were randomly divided into four groups (control, D-galactose-induced AD, MB-treated AD, and only MB-treated mice). Mice in the corresponding groups were injected with D-galactose (50 mg/kg, s.c.) for 60 days. In the MB treatment groups, the mice were treated with MB (2 mg/kg, orally) for the last 14 days of treatments. The Morris water maze test was used to assess spatial learning and memory functions. Amyloid β-42, malondialdehyde, superoxide dismutase, and nitric oxide levels in the hippocampi of mice were measured using ELISA and spectrophotometry. MB treatment improved impaired learning and memory functions induced by D-galactose administration and decreased amyloid β-42 concentration in the hippocampi of mice. Malondialdehyde level was found to decrease in MB-treated mice compared to D-galactose-induced AD mice in the hippocampus and plasma. The hippocampus of MB-treated mice displayed increased superoxide dismutase activity while decreased nitric oxide concentration compared to the ones of D-galactose-induced AD mice. MB has been shown to improve learning and memory impairments, as well as reduce Aβ-42 concentration and oxidative stress in the hippocampus of D-galactose-induced AD mice. The findings of this study demonstrate that MB may offer potential benefits as a repurposed agent for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ali, T., Badshah, H., Kim, T.H., and Kim, M.O., Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model, J. Pineal Res., 2015, vol. 58, pp. 71–85. https://doi.org/10.1111/jpi.12194

    Article  CAS  PubMed  Google Scholar 

  2. Atamna, H. and Kumar, R., Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase, J. Alzheimers Dis., 2010, vol. 20, suppl. 2, pp. S439–S452. https://doi.org/10.3233/jad-2010-100414

    Article  PubMed  Google Scholar 

  3. Atamna, H., Nguyen, A., Schultz, C., Boyle, K., Newberry, J., Kato, H., and Ames, B.N., Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways, FASEB J., 2008, vol. 22, pp. 703–712. https://doi.org/10.1096/fj.07-9610com

    Article  CAS  PubMed  Google Scholar 

  4. Berrocal, M., Corbacho, I., Gutierrez-Merino, C., and Mata, A.M., Methylene blue activates the PMCA activity and cross-interacts with amyloid beta-peptide, blocking Abeta-mediated PMCA inhibition, Neuropharmacology, 2018, vol. 139, pp. 163–172. https://doi.org/10.1016/j.neuropharm.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  5. Berrocal, M., Caballero-Bermejo, M., Gutierrez-Merino, C., and Mata, A.M., Methylene blue blocks and reverses the inhibitory effect of Tau on PMCA function, Int. J. Mol. Sci., 2019, vol. 20. https://doi.org/10.3390/ijms20143521

  6. Bruchey, A.K. and Gonzalez-Lima, F., Behavioral, physiological and biochemical hormetic responses to the autoxidizable dye methylene blue, Am. J. Pharmacol. Toxicol., 2008, vol. 3, pp. 72–79. https://doi.org/10.3844/ajptsp.2008.72.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boriskin, P., Gulenko, O.V., Deviatkin, A., Pavlova, O., and Toropovskiy, A., Correlation of superoxide dismutase activity distribution in serum and tissues of small experimental animals, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 403. https://doi.org/10.1088/1755-1315/403/1/012112

  8. Callaway, N.L., Riha, P.D., Bruchey, A.K., Munshi, Z., and Gonzalez-Lima, F., Methylene blue improves brain oxidative metabolism and memory retention in rats, Pharmacol. Biochem. Behav., 2004, vol. 77, pp. 175–181. https://doi.org/10.1016/j.pbb.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  9. Cardoso, A., Magano, S., Marrana, F., and Andrade, J.P., D-galactose high-dose administration failed to induce accelerated aging changes in neurogenesis, anxiety, and spatial memory on young male Wistar rats, Rejuvenation Res., 2015, vol. 18, pp. 497–507. https://doi.org/10.1089/rej.2015.1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chadwick, W., Maudsley, S., Hull, W., Havolli, E., Boshoff, E., Hill, M.D.W., Goetghebeur, P.J.D., Harrison, D.C., Nizami, S., Bedford, D.C., Coope, G., Real, K., Thiemermann, C., Maycox, P., Carlton, M., and Cole, S.L., The oDGal mouse: a novel, physiologically relevant rodent model of sporadic Alzheimer’s disease, Int. J. Mol. Sci., 2023, vol. 24. https://doi.org/10.3390/ijms24086953

  11. Chalmers, K.A. and Love, S., Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons, J. Neuropathol. Exp. Neurol., 2007, vol. 66, pp. 158–167. https://doi.org/10.1097/nen.0b013e3180303b93

    Article  CAS  PubMed  Google Scholar 

  12. Congdon, E.E., Wu, J.W., Myeku, N., Figueroa, Y.H., Herman, M., Marinec, P.S., Gestwicki, J.E., Dickey, C.A., Yu, W.H., and Duff, K.E., Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo, Autophagy, 2012, vol. 8, pp. 609–622. https://doi.org/10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deiana, S., Harrington, C.R., Wischik, C.M., and Riedel, G., Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine, Psychopharmacology (Berl.), 2009, vol. 202, pp. 53–65. https://doi.org/10.1007/s00213-008-1394-2

    Article  CAS  PubMed  Google Scholar 

  14. Du, X., Wang, X., and Geng, M., Alzheimer’s disease hypothesis and related therapies, Transl. Neurodegener., 2018, vol. 7, p. 2. https://doi.org/10.1186/s40035-018-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eckert, G.P., Renner, K., Eckert, S.H., Eckmann, J., Hagl, S., Abdel-Kader, R.M., Kurz, C., Leuner, K., and Muller, W.E., Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease, Mol. Neurobiol., 2012, vol. 46, pp. 136–150. https://doi.org/10.1007/s12035-012-8271-z

    Article  CAS  PubMed  Google Scholar 

  16. Garg, G., Singh, S., Singh, A.K., and Rizvi, S.I., Antiaging effect of metformin on brain in naturally aged and accelerated senescence model of rat, Rejuvenation Res., 2017, vol. 20, pp. 173–182. https://doi.org/10.1089/rej.2016.1883

    Article  CAS  PubMed  Google Scholar 

  17. Gauthier, S., Feldman, H.H., Schneider, L.S., Wilcock, G.K., Frisoni, G.B., Hardlund, J.H., Moebius, H.J., Bentham, P., Kook, K.A., Wischik, D.J., Schelter, B.O., Davis, C.S., Staff, R.T., Bracoud, L., Shamsi, K., Storey, J.M., Harrington, C.R., and Wischik, C.M., Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial, Lancet, 2016, vol. 388, pp. 2873–2884. https://doi.org/10.1016/S0140-6736(16)31275-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. International A.S.D., World Alzheimer Report 2021, 2021.

  19. Kazkayasi, I., Telli, G., Nemutlu, E., and Uma, S., Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer’s disease, Life Sci., 2022, vol. 299, p. 120538. https://doi.org/10.1016/j.lfs.2022.120538

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, R., Saraswat, K., and Rizvi, S.I., 2-Deoxy-D-glucose at chronic low dose acts as a caloric restriction mimetic through a mitohormetic induction of ROS in the brain of accelerated senescence model of rat, Arch. Gerontol. Geriatr., 2020, vol. 90, p. 104133. https://doi.org/10.1016/j.archger.2020.104133

    Article  CAS  PubMed  Google Scholar 

  21. Lin, A.L., Poteet, E., Du, F., Gourav, R.C., Liu, R., Wen, Y., Bresnen, A., Huang, S., Fox, P.T., Yang, S.H., and Duong, T.Q., Methylene blue as a cerebral metabolic and hemodynamic enhancer, PLoS One, 2012, vol. 7, p. e46585. https://doi.org/10.1371/journal.pone.0046585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Medina, D.X., Caccamo, A., and Oddo, S., Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity, Brain Pathol., 2011, vol. 21, pp. 140–149. https://doi.org/10.1111/j.1750-3639.2010.00430.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melis, V., Magbagbeolu, M., Rickard, J.E., Horsley, D., Davidson, K., Harrington, K.A., Goatman, K., Goatman, E.A., Deiana, S., Close, S.P., Zabke, C., Stamer, K., Dietze, S., Schwab, K., Storey, J.M., Harrington, C.R., Wischik, C.M., Theuring, F., and Riedel, G., Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models, Behav. Pharmacol., 2015, vol. 26, pp. 353–368. https://doi.org/10.1097/fbp.0000000000000133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori, T., Koyama, N., Segawa, T., Maeda, M., Maruyama, N., Kinoshita, N., Hou, H., Tan, J., and Town, T., Methylene blue modulates β-secretase, reverses cerebral amyloidosis, and improves cognition in transgenic mice, J. Biol. Chem., 2014, vol. 289, pp. 30303–30317. https://doi.org/10.1074/jbc.M114.568212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Necula, M., Breydo, L., Milton, S., Kayed, R., van der Veer, W.E., Tone, P., and Glabe, C.G., Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization, Biochemistry, 2007, vol. 46, pp. 8850–8860. https://doi.org/10.1021/bi700411k

    Article  CAS  PubMed  Google Scholar 

  26. O’Leary, J.C., 3rd, Li, Q., Marinec, P., Blair, L.J., Congdon, E.E., Johnson, A.G., Jinwal, U.K., Koren, J., 3rd, Jones, J.R., Kraft, C., Peters, M., Abisambra, J.F., Duff, K.E., Weeber, E.J., Gestwicki, J.E., and Dickey, C.A., Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden, Mol. Neurodegener., 2010, vol. 5, p. 45. https://doi.org/10.1186/1750-1326-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oz, M., Lorke, D.E., Hasan, M., and Petroianu, G.A., Cellular and molecular actions of Methylene Blue in the nervous system, Med. Res. Rev., 2011, vol. 31, pp. 93–117. https://doi.org/10.1002/med.20177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oz, M., Lorke, D.E., and Petroianu, G.A., Methylene blue and Alzheimer’s disease, Biochem. Pharmacol., 2009, vol. 78, pp. 927–932. https://doi.org/10.1016/j.bcp.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  29. Paban, V., Manrique, C., Filali, M., Maunoir-Regimbal, S., Fauvelle, F., and Alescio-Lautier, B., Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model, Neuropharmacology, Part A, 2014, vol. 76, pp. 68–79. https://doi.org/10.1016/j.neuropharm.2013.06.033

    Article  CAS  Google Scholar 

  30. Parameshwaran, K., Irwin, M.H., Steliou, K., and Pinkert, C.A., D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice, Rejuvenation Res., 2010, vol. 13, pp. 729–735. https://doi.org/10.1089/rej.2010.1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peter, C., Hongwan, D., Kupfer, A., and Lauterburg, B.H., Pharmacokinetics and organ distribution of intravenous and oral methylene blue, Eur. J. Clin. Pharmacol., 2000, vol. 56, pp. 247–250. https://doi.org/10.1007/s002280000124

    Article  CAS  PubMed  Google Scholar 

  32. Rehman, S.U., Shah, S.A., Ali, T., Chung, J.I., and Kim, M.O., Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats, Mol. Neurobiol., 2017, vol. 54, pp. 255–271. https://doi.org/10.1007/s12035-015-9604-5

    Article  CAS  PubMed  Google Scholar 

  33. Schelter, B.O., Shiells, H., Baddeley, T.C., Rubino, C.M., Ganesan, H., Hammel, J., Vuksanovic, V., Staff, R.T., Murray, A.D., Bracoud, L., Riedel, G., Gauthier, S., Jia, J., Bentham, P., Kook, K., Storey, J.M.D., Harrington, C.R., and Wischik, C.M., Concentration-dependent activity of hydromethylthionine on cognitive decline and brain atrophy in mild to moderate alzheimer’s disease, J. Alzheimers Dis., 2019, vol. 72, pp. 931–946. https://doi.org/10.3233/JAD-190772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schirmer, R.H., Adler, H., Pickhardt, M., and Mandelkow, E., “Lest we forget you—methylene blue...,” Neurobiol. Aging, 2011, vol. 32, pp. 2325.e2327–2316. https://doi.org/10.1016/j.neurobiolaging.2010.12.012

    Article  CAS  Google Scholar 

  35. Shwe, T., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S.C., Role of D-galactose-induced brain aging and its potential used for therapeutic interventions, Exp. Gerontol., 2018, vol. 101, pp. 13–36. https://doi.org/10.1016/j.exger.2017.10.029

    Article  CAS  PubMed  Google Scholar 

  36. Soeda, Y., Saito, M., Maeda, S., Ishida, K., Nakamura, A., Kojima, S., and Takashima, A., Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: a plausible key to understanding failure of a clinical trial for Alzheimer’s disease, J. Alzheimers Dis., 2019, vol. 68, pp. 1677–1686. https://doi.org/10.3233/jad-181001

    Article  CAS  PubMed  Google Scholar 

  37. Spires-Jones, T.L., Friedman, T., Pitstick, R., Polydoro, M., Roe, A., Carlson, G.A., and Hyman, B.T., Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy, Neurosci. Lett., 2014, vol. 562, pp. 63–68. https://doi.org/10.1016/j.neulet.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., Goedert, M., and Hasegawa, M., Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins, J. Biol. Chem., 2005, vol. 280, pp. 7614–7623. https://doi.org/10.1074/jbc.M408714200

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., Fasina, O.B., Manzoor, M., Wang, Y., Liu, Q., Mo, J., Ohno, H., Osada, H., Xiang, L., and Qi, J., A new gentiopicroside derivative improves cognitive deficits of AD mice via activation of Wnt signaling pathway and regulation of gut microbiota homeostasis, Phytomedicine, 2023, vol. 113, p. 154730. https://doi.org/10.1016/j.phymed.2023.154730

    Article  CAS  PubMed  Google Scholar 

  40. Wei, H., Wu, G., Chen, J., Zhang, X., Xiong, C., Lei, Y., Chen, W., and Ruan, J., (2S)-5,2',5'-trihydroxy-7-methoxyflavanone, a natural product from Abacopteris penangiana, presents neuroprotective effects in vitro and in vivo, Neurochem. Res., 2013, vol. 38, pp. 1686–1694. https://doi.org/10.1007/s11064-013-1070-8

    Article  CAS  PubMed  Google Scholar 

  41. Wen, Y., Li, W., Poteet, E.C., Xie, L., Tan, C., Yan, L.J., Ju, X., Liu, R., Qian, H., Marvin, M.A., Goldberg, M.S., She, H., Mao, Z., Simpkins, J.W., and Yang, S.H., Alternative mitochondrial electron transfer as a novel strategy for neuroprotection, J. Biol. Chem., 2011, vol. 286, pp. 16504–16515. https://doi.org/10.1074/jbc.M110.208447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilcock, G.K., Gauthier, S., Frisoni, G.B., Jia, J., Hardlund, J.H., Moebius, H.J., Bentham, P., Kook, K.A., Schelter, B.O., Wischik, D.J., Davis, C.S., Staff, R.T., Vuksanovic, V., Ahearn, T., Bracoud, L., Shamsi, K., Marek, K., Seibyl, J., Riedel, G., Storey, J.M.D., Harrington, C.R., and Wischik, C.M., Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial, J. Alzheimers Dis., 2018, vol. 61, pp. 435–457. https://doi.org/10.3233/jad-170560

    Article  CAS  PubMed  Google Scholar 

  43. Wischik, C.M., Edwards, P.C., Lai, R.Y., Roth, M., and Harrington, C.R., Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 11213–11218. https://doi.org/10.1073/pnas.93.20.11213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wischik, C.M., Staff, R.T., Wischik, D.J., Bentham, P., Murray, A.D., Storey, J.M., Kook, K.A., and Harrington, C.R., Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease, J. Alzheimers Dis., 2015, vol. 44, pp. 705–720. https://doi.org/10.3233/jad-142874

    Article  CAS  PubMed  Google Scholar 

  45. Yadollahikhales, G. and Rojas, J.C., Anti-Amyloid Immunotherapies for Alzheimer’s disease: a 2023 clinical update, Neurotherapeutics, 2023. https://doi.org/10.1007/s13311-023-01405-0

  46. Zakaria, A., Hamdi, N., and Abdel-Kader, R.M., Methylene blue improves brain mitochondrial ABAD functions and decreases Aβ in a neuroinflammatory Alzheimer’s disease mouse model, Mol. Neurobiol., 2016, vol. 53, pp. 1220–1228. https://doi.org/10.1007/s12035-014-9088-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kazkayasi.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The experimental procedures were approved by the Animal Experimentations Local Ethical Board of Hacettepe University (Decision no. 2021/06-13, date of ethical decision is August 24, 2021).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazkayasi, I., Telli, G. Methylene Blue Attenuates Impaired Cognitive Functions and Reduces Hippocampal Aβ Levels and Oxidative Stress in D-Galactose-Induced Alzheimer’s Disease Mouse Model. Biol Bull Russ Acad Sci (2024). https://doi.org/10.1134/S106235902360455X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S106235902360455X

Keywords:

Navigation