Skip to main content
Log in

Effects of Diet on Phenoloxidase Activity and Development of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Larvae

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In this study, the effects of different concentrations of carbohydrates on the phenoloxidase activity (PO) and development of Ephestia kuehniella larvae were investigated. For this purpose, 10 artificial diets-containing different carbonhydrates (sucrose or arabinose) were prepared. According to results, development and immunity are related to each other. A negative correlation was determined between the pupa mass, the amount of pupal lipid and the amount of pupal crude protein, and PO activity for all carbohydrate types. One of the remarkable results of the study is that the larvae fed on the 5A:P diet failed to reach the pupal stage. Diets-containing arabinose apart from 1A:P diet were consumed less than sucrose-containing diets. The PO activities of the larvae differ according to the dietary nutritional imbalance and the type of carbohydrates of diet. Except for 1A:3P and 1A:5P diets, the larvae fed on diets-containing arabinose generally have higher PO activities. The results show that arabinose is toxic to this species or that the carbohydrate is not usable by the larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Airs, P.M., Kudrna, K.E., and Bartholomay, L.C., Impact of sugar composition on meal distribution, longevity, and insecticide toxicity in Aedes aegypti, Acta Trop., 2019, vol. 191, pp. 221–227.

    Article  CAS  Google Scholar 

  2. Almire, F., Terhzaz, S., Terry, S., McFarlane, M., Gestuveo, R.J., Szemiel, A.M., Varjak, M., McDonald, A., Kohl, A., and Pondeville, E., Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti, PLoS Pathog., 2021. https://doi.org/10.1371/journal.ppat.1009870

  3. Ankola, K., Kumar, S.S., Mondel, P. and Puttaraju, H.P., Age dependent regulation of phenoloxidase activity through single and multiple wounding in silkworm, Bombyx mori (Lepidoptera: Bombycidae), Entomol. News, 2018, vol. 127, no. 5, pp. 401–406.

    Article  Google Scholar 

  4. Asano, T., Seto, Y., Hashimoto, K. and Kurushima, H., Mini-review an insect-specific system for terrestrialization: laccase-mediated cuticle formation, Insect Biochem. Mol. Biol., 2019, vol. 108, pp. 61–70.

    Article  CAS  Google Scholar 

  5. Barbehenn, V.R., Knister, J., Marsik, F., Miller, J.C. and Nham, W., Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae, Physiol. Entomol., 2015, vol. 40, pp. 72–81.

    Article  CAS  Google Scholar 

  6. Bluthgen, N. and Fiedler, K., Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community, J. Anim. Ecol., 2004, vol. 73, pp. 155–166.

    Article  Google Scholar 

  7. Borzoui, E., Naseri, B., and Nouri-Ganbalani, G., Effects of food quality on biology and physiological traits of Sitotroga cerealella (Lepidoptera: Gelechiidae), J. Econ. Entomol., 2017, vol. 110, no. 1, pp. 266–273.

    CAS  Google Scholar 

  8. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  9. Brunner, F., Schmid-Hempel, P., and Barribeau, S.M., Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris, Arch. Proc. R. Soc., B: Biol. Sci., 2014, vol. 281, p. 20140128.

    Article  Google Scholar 

  10. Bulut, H. and Kılınçer, N., Yumurta parazitoiti Trichogramma spp. (Hym: Trichogrammatidae) un güvesi (Ephestia kuehniella Zell. (Lepidoptera: Pyralidae) yumurta üretimi ve konukçu parazitoid ilişkileri, in Proceedings of the First Turkish National Congress of Entomology, October 13–16, 1987, Türkiye Entomoloji Derneği, İzmir, Turkey, 1987.

  11. Cornelius, M.L., Grace, J.K. and Yates, J.R., Acceptability of different sugars and oils to three tropical ant species (Hymen., Formicidae), J. Pest Sci., 1996, vol. 69, pp. 41– 43.

    Google Scholar 

  12. Cotter, S.C., Simpson, S.J., Raubenheimer, D. and Wilson, K., Macronutrient balance mediates trade-offs between immune function and life history traits, Funct. Ecol., 2011, vol. 25, pp. 186–198.

    Article  Google Scholar 

  13. Freitak, D., Wheat, C.W., Heckel, D.G., and Vogel, H., Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni, BMC Biol., 2007, vol. 5, no. 56, pp. 1–13.

    Article  Google Scholar 

  14. Garvey, M., Bredlau, J., Kester, K., Creighton, C., and Kaplan, I., Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar, Funct. Ecol., 2020, vol. 35, pp. 614–626.

    Article  Google Scholar 

  15. Gonzales-Santoyo, I. and Aguilar, A.C., Phenoloxidase: a key component of the insect immune system, Entomol. Exp. Appl., 2012, vol., 142, pp. 1–16.

    Article  Google Scholar 

  16. Green, K.K., The effects of host plant species and larval density on immune function in the polyphagous moth Spodoptera littoralis, Ecol. Evol., 2021, vol. 11, pp. 10090–10097.

    Article  Google Scholar 

  17. Harvey, G.T., Nutritional studies of eastern spruce budworm (Lepidoptera: Tortricidae). I. Soluble sugars, Can. Entomol., 1974, vol. 106, pp. 353–365.

    Article  CAS  Google Scholar 

  18. Hu, J.S., Gelman, D.B., Salvucci, M.E., Chen, Y.P., and Blackburn, M.B., Insecticidal activity of some reducing sugars against the sweet potato whitefly, Bemisia tabaci, biotype B, J. Insect Sci., 2010, vol. 10, pp. 1–22.

    Article  Google Scholar 

  19. Iwanaga, S. and Lee, B.L., Recent advances in the innate immunity of invertebrate animals, Int. J. Biochem. Mol. Biol., 2005, vol. 38, pp. 128–150.

    CAS  Google Scholar 

  20. Juma, G., Thiongo, M., Dutaur, L., Rharrabe, K., Marion-Poll, F., Le, R.B., Magoma, G., Silvain, J.F., and Calatayud, P.A., Two sugar isomers influence host plant acceptance by a cereal caterpillar pest, Bull. Entomol. Res., 2013, vol. 103, pp. 20–28.

    Article  CAS  Google Scholar 

  21. Kangassalo, K., Valtonen, T.M., Sorvari, J., Kecko, S., Polkki, M., Krams, I., Krama, T., and Rantala, M.J., Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella), J. Evol. Biol., 2018, vol. 10, pp. 1485–1497.

    Article  Google Scholar 

  22. Klemola, N., Klemola, T., Rantala, M.J., and Ruuhola, T., Natural host-plant quality affects immune defence of an insect herbivore, Entomol. Exp. Appl., 2007, vol. 123, pp. 167–176.

    Article  CAS  Google Scholar 

  23. Kraus, S., Monchanin, C., Gomez-Moracho, T., and Lihoreau, M., in Encyclopedia of Animal Cognition and Behavior, Vonk, J. and Shackelford, T., Eds., Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-47829-6_1137-1

  24. Lee, K.P., Behmer, S.T., Simpson, S.J., and Raubenheimer, D., A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval), J. Insect Physiol., 2002, vol. 48, pp. 655–665.

    Article  CAS  Google Scholar 

  25. Lee, K.P., Simpson, J.S., and Wilson, K., Dietary protein-quality influences melanization and immune function in an insect, Funct. Ecol., 2008, vol. 22, pp. 1052–1061.

    Article  Google Scholar 

  26. Locker, E.S., Adema, C.M., Zhang, S.M., and Kepler, T.B., Invertebrate immune systems—not homogeneous, not simple, not well understood, Immunol. Rev., 2004, vol. 198, pp. 10–24.

    Article  Google Scholar 

  27. Loveridge, J.P., Age and the changes in water and fat content of adult laboratory-reared Locusta migratoria migratorioides, Rhod. J. Agric. Res., 1973, vol. 11, pp. 131–143.

    Google Scholar 

  28. Mason, A.P., Smilanich, M.A., and Singer, S.M., Reduced consumption of protein-rich foods follows immune challenge in a polyphagous caterpillar, J. Exp. Biol., 2014, pp. 2250–2260.

  29. Mattson, W.J., Herbivory in relation to plant nitrogen content, Ann. Rev. Ecol. Syst., 1980, vol. 11, pp. 119–161.

    Article  Google Scholar 

  30. Mehmetoğlu, R. and Başhan, M., Melanogryllus desertus Pall. (Orthoptera: Gryllidae)’nin Karbohidrat Ihtiyaçları, Turk. J. Biol., 1996, vol. 23, pp. 91–100.

    Google Scholar 

  31. Mercimek, S., Özalp, P., and Coşkun, M., The effect of some sugar supplemented diet with various sucrose ratios on the life cycle and egg productivity of the adult females of Pimpla turionellae L. (Hymenoptera: Ichneumonidae), J. Entomol. Res. Soc., 2010, vol. 12, no. 1, pp. 1–7.

    Google Scholar 

  32. Muller, K., Vogelweith, F., Thiery, D., Moret, Y., and Moreau, J., Immune benefits from alternative host plants could maintain polyphagy in a phytophagous insect, Oecologia, 2014, vol. 177, pp. 467–475.

    Article  Google Scholar 

  33. Nouri, B., Fotouhi, K., Mohtasebi, S.S., Nasiri, A., and Goldansaaz, S.H., Detection of different densities of Ephestia kuehniella pest on white flour at different larvae instar by an electronic nose system, J. Stored Prod. Res., 2019, vol. 84, p. 101522.

    Article  Google Scholar 

  34. Oonincx, D.G.A.B., Broekhoven, S.V., Huis, A.V., Joop, J.A., and Loon, V., Feed conversion, survival and development, and composition of four ınsect species on diets composed of food by-products, PLoS One, 2015, pp. 1–20.

  35. Puterka, G.J., Glenn, D.M., Sekutowski, D.G., Unruh, T.R., and Jones, S.K., Particle film, Surround WP, effects on glassy-winged sharpshooter behavior and its utility as a barrier to sharpshooter infestation in grapes, Plant Health Programme, 2003. https://doi.org/10.1094/PHP-2003-0321-RS

  36. Rockstein, M., Biochemistry of Insects, New York: Academic Press, 1978.

    Google Scholar 

  37. Sharrock, J and Sun, J.C., Innate ımmunological memory: from plants to animals, Curr. Opin. Immunol., 2020, vol. 62, pp. 69–78.

    Article  CAS  Google Scholar 

  38. Sadawarte, A.K., Nachane, M.N., Moharil, M.P., and Satpute, N.S., Phenoloxidase activity in hemolymph of naïve and HaNPV infected larvae of Helicoverpa armigera (HB), its characterization and inhibition, J. Pharmacogn. Phytochem., 2019, vol. 8, no, 1, pp. 1756–1763.

    CAS  Google Scholar 

  39. Schwier, N., Zhang, K., Nakamura, S., and Furukawa, S., Larvae of the tachinid fly, Drino inconspicuoides (Diptera: Tachinidae), suppress melanization in host lepidopteran insects, J. Asia-Pac. Entomol., 2021, vol. 24, no. 4, pp. 1050–1054.

    Article  Google Scholar 

  40. Simpson, S.J. and Raubenheimer, D., The geometric analysis of nutrient–allelochemical interactions: a case study using locusts, Ecology, 2001, vol. 82, pp. 422–439.

    Google Scholar 

  41. Sivrikaya, R., Altun, N., and Faiz, Ö., Diet-mediated modulation on the development and phenoloxidase activity in the Alder leaf beetle larvae, Agelastica alni (L., 1758) (Coleoptera: Chrysomelidae), Turk. J. Entomol., 2020, vol. 44, no. 2, pp. 193–202.

    Article  Google Scholar 

  42. Srygley, R.B., Lorch, P.D., Simpson, S.J., and Sword, G.A., Immediate protein dietary effects on movement and the generalised immunocompetence of migrating mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae), Ecol. Entomol., 2009, vol. 34, pp. 663–668.

    Article  Google Scholar 

  43. Vogelweith, F., Thiery, D., Quaglietti, B., Moret, Y., and Moreau, J., Host plant variation plastically impacts different traits the immune system of a phytophagous, Funct. Ecol., 2011, vol. 25, pp. 1241–1247.

    Article  Google Scholar 

  44. Vogelweith, F., Thiery, D., Moret, Y., and Memoreau, J., Food-mediated modulation of immunity in a phytophagous insect: An effect of nutrition rather than parasitic contamination, J. Insect Physiol., 2015, vol. 77, pp. 55–61.

    Article  CAS  Google Scholar 

  45. Wu, K., Zhang J., Zhu, S., Shao, Q., Clark, C.D., Liu, Y., and Ling, E., Plant phenolics are detoxified by prophenoloxidase in the insect gut, Sci. Rep., 2015, vol. 5, p. 16823.

    Article  CAS  Google Scholar 

  46. Yamamoto, R.T., Mass rearing of Tobacco Hornworm. II. Larval rearing and pupation, J. Econ. Entomol., 1969, vol. 62, pp. 1427–1431.

    Article  Google Scholar 

  47. Yi, L., Lakemonda, C.M.M., Sagisb, L.M.C., Eisner-Schadlerc, V., Van Huisd, A., and Van Boekela, M.A.J.S., Extraction and characterization of protein fractions from five insect species, Food Chem., 2013, vol. 141, pp. 3341–3348.

    Article  CAS  Google Scholar 

  48. Xu, J., Reproductive behaviour of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), PhD Thesis, Massey University, New Zealand, 2010.

  49. Zhang, D.W., Xiao, Z.J., Zeng, B.P., Li, K., and Tang, Y.L., Insect behavior and physiological adaptation mechanisms under starvation stress, Front. Physiol., 2019, vol. 10, pp. 1–8.

    Google Scholar 

  50. Zuk, M. and Stoehr, A.M., Immune defense and host life history, Am. Nat., 2002, vol. 160, pp. 9–22.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was conducted as a master thesis at Recep Tayyip Erdoğan University. Furthermore, it was presented as an oral presentation at the Iseep-2017 VIII. International Symposium on Ecology and Environmental Problems, Çanakkale, Turkey, and it was published as a summary abstract in the proceedings book. Opinions, findings, conclusions, and recommendations expressed in this publication are all of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurver Altun.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest. Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebru Korkmaz, Altun, N. & Faiz, Ö. Effects of Diet on Phenoloxidase Activity and Development of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Larvae. Biol Bull Russ Acad Sci 49 (Suppl 1), S189–S197 (2022). https://doi.org/10.1134/S106235902213009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902213009X

Keywords:

Navigation