Skip to main content
Log in

Anomalous-Diffraction Method Applied to Studying the Structure of the Composite Oxide (Eu2Hf2O7)

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The anomalous-diffraction method applied near the absorption edge of Hf is used to investigate the features of atomic ordering in the Eu2Hf2O7 structure. Structural parameterization describing a continuous transition between ideally disordered (fluorite) and ideally ordered (chalcolamprite) structures is proposed. A comparison between the calculated and experimental results demonstrates qualitative coincidence and confirms the hypothesis that the sample under study exists in the intermediate phase. The method is sensitive to cation ordering, but anion ordering of the suggested model is not described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. V. Popov, A. P. Menushenkov, A. A. Yaroslavtsev, et al., J. Alloys Compd. 689, 669 (2016).

    Article  Google Scholar 

  2. P. E. R. Blanchard, R. Clements, B. J. Kennedy, et al., Inorg. Chem. 51, 5113237 (2012).

    Article  Google Scholar 

  3. P. E. R. Blanchard, S. Liu, B. J. Kennedy, et al., J. Phys. Chem. C 117, 2266 (2013).

    Article  Google Scholar 

  4. J. M. Farmer, L. A. Boatner, B. C. Chakoumakos, et al., J. Alloys Compd. 605, 63 (2014).

    Article  Google Scholar 

  5. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

    Article  Google Scholar 

  6. V. V. Popov and A. A. Pisarev, Materials and Processes for Synthesizing Heat-Protective Coatings (National Research Nuclear Univ. “Moscow Engineering Physics Institute,” Moscow, 2016) [in Russian].

  7. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).

    Article  Google Scholar 

  8. H. Yamamura, H. Nishino, K. Kakinuma, and K. Nomura, Solid State Ionics 158, 359 (2003).

    Article  Google Scholar 

  9. H. L. Tuller, Solid State Ionics 52, 135 (1992).

    Article  Google Scholar 

  10. S. Saha, S. Prusty, S. Singh, et al., J. Phys.: Condens. Matter 23, 445402 (2011).

    Google Scholar 

  11. R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).

    Article  Google Scholar 

  12. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  Google Scholar 

  13. A. V. Shlyakhtina, A. D. Belov, S. Yu. Stefanovich, et al., Mater. Res. Bull. 46, 512 (2011).

    Article  Google Scholar 

  14. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).

    Article  Google Scholar 

  15. A. R. Cleave, PhD Thesis (London Imperial College, London, 2006).

  16. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 60, 602 (2015).

    Article  Google Scholar 

  17. A. V. Shlyakhtina, M. V. Boguslavskii, S. Yu. Stefanovich, et al., Inorg. Mater. 42, 519 (2006).

    Article  Google Scholar 

  18. H. Mark and L. Z. Szilaid, Z. Phys. 33, 688 (1925).

    Article  Google Scholar 

  19. H. L. Yakel, Acta Crystallogr., Sect. B: Struct. Sci. 39, 20 (1983).

    Article  Google Scholar 

  20. H. L. Yakel, Acta Crystallogr., Sect. B: Struct. Sci. 39, 28 (1983).

    Article  Google Scholar 

  21. A. P. Wilkinson, A. K. Cheetham, S. C. Tang, and W. J. Reppart, J. Chem. Soc., Chem. Commun., No. 20, 1485 (1992).

  22. J. Lorimier, F. Bernard, J.-C. Niepce, et al., J. Appl. Crystallogr. 36, 301 (2003).

    Article  Google Scholar 

  23. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).

    Article  Google Scholar 

  24. D. T. Cromer and D. A. Liberman, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 37, 267 (1981).

    Article  Google Scholar 

  25. S. Brennan and P. L. Cowan, Rev. Sci. Instrum. 63, 850 (1992).

    Article  Google Scholar 

  26. M. Newville, Fundamentals of XAFS (University of Chicago, Chicago, 2004).

    Google Scholar 

  27. L. K. Templeton and D. H. Templeton, Acta Crystallogr., Sect. A: Found. Crystallogr. 44, 1045 (1988).

    Article  Google Scholar 

  28. L. K. Templeton and D. H. Templeton, J. Appl. Crystallogr. 21, 558 (1988).

    Article  Google Scholar 

  29. L. K. Templeton and D. H. Templeton, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 38, 74 (1982).

    Article  Google Scholar 

  30. R. W. James, The Optical Principles of the Diffraction of X-Rays. The Crystalline State (G. Bell and Sons, London, 1962), Vol. 2.

    Google Scholar 

  31. F. Hippert, E. Geissler, J.-L. Hodeau, et al., Neutron and X-Ray Spectroscopy, Vol. 7: Anomalous Scattering and Diffraction Anomalous Fine Structure (Springer, 2006).

  32. R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).

    Article  Google Scholar 

  33. H. A. Kramers, in Proc. Atti del Congresso Internationale dei Fisici (Proc. Volta Centenary Congress) (Como, 1927), Vol. 2, p. 545.

  34. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 95 (2009).

    Google Scholar 

  35. B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).

    Article  Google Scholar 

  36. J. Brentano and A. Baxter, Z. Phys. 89, 720 (1934).

    Article  Google Scholar 

  37. A. Hammersley, High Pressure Res. 14, 235 (1996).

    Article  Google Scholar 

  38. N. A. Kolyshkin, MSc Dissertation (Moscow Institute of Physics and Technology, Moscow, 2015).

  39. P. E. R. Blanchard, S. Liu, B. J. Kennedy, and C. D. Ling, J. Phys. Chem. C 117, 2266 (2013).

    Article  Google Scholar 

  40. G. Meitzner, G. H. Via, F. W. Lytle, and J. H. Sinfelt, J. Phys. Chem. 96, 4961 (1992).

    Article  Google Scholar 

  41. V. E. Gmurman, Guideline for Solving Problems on Theory of Probability and Mathematical Statistics (Vysshaya Shkola, Moscow, 2004) [in Russian].

    Google Scholar 

  42. K. Pearson, Philos. Mag. 50, 157 (1900).

Download references

ACKNOWLEDGMENTS

This work was supported by the Council for Grants of the President of the Russian Federation, grant no. SP-982.2016.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kolyshkin.

Additional information

Translated by S. Rodikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyshkin, N.A., Veligzhanin, A.A., Zubavichus, Y.V. et al. Anomalous-Diffraction Method Applied to Studying the Structure of the Composite Oxide (Eu2Hf2O7). J. Surf. Investig. 12, 1176–1181 (2018). https://doi.org/10.1134/S1027451018050634

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050634

Keywords:

Navigation