Skip to main content
Log in

Cluster-Type Structure of Amorphous Smooth Hydrocarbon CD x Films (x ~ 0.5) from T-10 Tokamak

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Structure of smooth hydrocarbon CD x films with a high deuterium ratio x ~ 0.5 redeposited from T-10 tokamak D-plasma discharges (NRC Kurchatov Institute, Moscow) has been studied. For the first time, small and wide angle X-ray scattering technique using synchrotron radiation and neutron diffraction have been employed. A fractal structure of CD x films is found to consist of mass-fractals with rough border, surface fractals (with rough surface), plane scatterers and linear chains forming a branched and highly cross-linked 3D carbon network. The found fractals, including sp2 clusters, are of typical size ~1.60 nm. They include a C13 fragment consisting of three interconnected aromatic rings forming a minimal fractal sp2 aggregate 9 × C13. These graphene-like sp2 clusters are interconnected and form a 3D lattice which can be alternatively interpreted as a highly defective graphene layer with a large concentration of vacancies. The unsaturated chemical bonds are filled with D, H atoms, linear sp2 C=C, C=O, and sp3 structural elements like C-C, C-H(D), C-D2,3, C-O, O-H, COOH, C x D(H) y found earlier from the infrared spectra of CD x films, which are binding linear elements of a carbon network. The amorphous structure of CD x films has been confirmed by the results of earlier fractal structure modeling, as well as by researches with X-ray photoelectron spectroscopy which allow finding a definite similarity with the electron structure of their model analogues — polymeric a-C:H and a-C:D films with a disordered carbon network consisting of atoms in sp3 + sp2 states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Usp. Fiz. Nauk 180 (10), 1055 (2010).

    Article  Google Scholar 

  2. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, A. M. Lebedev, and K. A. Menshikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (6), 1221 (2015).

    Article  Google Scholar 

  3. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, L. P. Sukhanov, K. A. Menshikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 23 (2016).

    Article  Google Scholar 

  4. Y. Kamada, P. Barabaschi, S. Ishida, et al., Nucl. Fusion 51, 07301 (2011).

    Article  Google Scholar 

  5. V. G. Stankevich, N. Yu. Svechnikov, Ya. V. Zubavichus, A. A. Veligzhanin, V. A. Somenkov, L. P. Sukhanov, B. N. Kolbasov, A. M. Lebedev, S. A. Grashin, and K. A. Men’shikov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 3, 19 (2012).

    Google Scholar 

  6. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, K. A. Men’shikov, A. M. Lebedev, B. N. Kolbasov, Ya. V. Zubavichus, and D. Rajarathnam, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (3), 420 (2009).

    Article  Google Scholar 

  7. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, K. A. Men’shikov, B. N. Kolbasov, M. I. Guseva, L. N. Khimchenko, N. M. Kocherginskii, R. Dkharmaradzhan, and Yu. Yu. Kostetskii, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 3, 3 (2004).

    Google Scholar 

  8. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, K. A. Menshikov, B. N. Kolbasov, M. I. Guseva, L. N. Khimchenko, D. Rajarathnam, Yu. Yu. Kostetsky, Plasma Devices Oper. 14 (2), 137 (2006).

    Article  Google Scholar 

  9. N. Yu. Svechnikov, V. G. Stankevich, I. I. Arkhipov, S. A. Grashin, K. I. Maslakov, A. M. Lebedev, L. P. Sukhanov, K. A. Menshikov, and Yu. V. Martinenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (5), 863 (2013).

    Article  Google Scholar 

  10. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 95 (2009).

    Article  Google Scholar 

  11. N. Yu. Svechnikov, V. G. Stankevich, K. A. Men’shikov, A. M. Lebedev, B. N. Kolbasov, V. A. Trunova, D. Rajarathnam, and Yu. Kostetski, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (6), 826 (2008).

    Article  Google Scholar 

  12. O. Malcai, D. A. Lidar, O. Biham, and D. Avnir, Phys. Rev. E 56 (3), 2817 (1997).

    Article  Google Scholar 

  13. G. Beaucage, S. Rane, D. W. Schaefer, G. Long, and D. Fischer, J. Polym. Sci., Part B: Polym. Phys. 37, 1105 (1999).

    Article  Google Scholar 

  14. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010).

    Article  Google Scholar 

  15. U. Jeng, T.-L. Lin, W.-J. Liu, C.-S. Tsao, T. Canteenwala, et al., Phys. A (Amsterdam, Neth.) 304, 191 (2002).

    Article  Google Scholar 

  16. W. Burchard, Macromolecules 10 (5), 919 (1977).

    Article  Google Scholar 

  17. G. Beaucage, S. Rane, S. Sukumaran, M. M. Satkowski, L. A. Schechtman, and Y. Doi, Macromolecules 30, 4158 (1997).

    Article  Google Scholar 

  18. K. I. Schitfmann, M. Fryda, and G. Goerigk, Mikrochim. Acta 125, 107 (1997).

    Article  Google Scholar 

  19. L. G. Jacobsohn, G. Capote, M. E. H. Maia Da Costa, D. F. Franceschini, and F. L. Freire, Diamond Relat. Mater. 11, 1946 (2002).

    Article  Google Scholar 

  20. C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, Q. Rev. Biophys. 40 (3), 191 (2007).

    Article  Google Scholar 

  21. Small Angle X-ray Scattering, Ed. by O. Glatter and O. Kratky (Academic Press, London, 1982).

    Google Scholar 

  22. C. Chachaty, J.-P. Korb, J. R. C. van der Maarel, W. Bras, and P. Quinn, Phys. Rev. B 44 (10), 4478 (1991).

    Article  Google Scholar 

  23. S. Rathgebera, M. Monkenbusch, M. Kreitschmann, V. Urban, and A. Brulet, J. Chem. Phys. 117 (8), 4047 (2002).

    Article  Google Scholar 

  24. M. Weth, J. Mathias, A. Emmerling, J. Kuhn, and J. Fricke, J. Porous Mater. 8, 319 (2001).

    Article  Google Scholar 

  25. The SAXS Guide. Getting Acquainted with the Principles, Ed. by H. Schnablegger and Y. Singh (Anton Paar GmbH, Graz, 2013).

    Google Scholar 

  26. K. I. Schiffmann, M. Fryda, G. È. Goerigk, R. Lauer, P. Hinze, and A. Bulack, Thin Solid Films 347, 60 (1999).

    Article  Google Scholar 

  27. A. Braun, J. Ilavsky, S. Seifert, and P. R. Jemian, J. Appl. Phys. 98, 073513 (2005).

    Article  Google Scholar 

  28. B. M. Smirnov, Physics of Fractal Clusters (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  29. D. W. Schaefer, G. Beaucage, D. A. Loy, K. J. Shea, and J. S. Lin, Chem. Mater. 16, 1402 (2004).

    Article  Google Scholar 

  30. V. G. Stankevich, N. Yu. Svechnikov, Ya. V. Zubavichus, A. A. Veligzhanin, V. A. Somenkov, L. P. Sukhanov, K. A. Men’shikov, A. M. Lebedev, B. N. Kolbasov, K. Yu. Vukolov, L. N. Khimchenko, D. Radzharatnam, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 1, 3 (2011).

    Google Scholar 

  31. A. Braun, F. E. Huggins, S. Seifert, J. Ilavsky, et al., Combust. Flame 137 (1–2), 63 (2004).

    Article  Google Scholar 

  32. J. B. A. Mitchell, J. Courbe, A. I. Florescu-Mitchell, et al., J. Appl. Phys. 100, 124918 (2006).

    Article  Google Scholar 

  33. B. Crist and G. D. Wignall, J. Appl. Crystallogr. 21, 701 (1988).

    Article  Google Scholar 

  34. D. A. Donatti, C. M. Awano, F. S. de Vicente, A. I. Ruiz, and D. R. Vollet, J. Phys. Chem. C 115, 667 (2011).

    Article  Google Scholar 

  35. P. K. Choudhury, D. Bagchi, and R. Menon, J. Phys.: Condens. Matter 21, 195801 (2009).

    Google Scholar 

  36. R. Vacher, T. Woigner, J. Pelous, and E. Courtens, Phys. Rev. B 37 (11), 6500 (1988).

    Article  Google Scholar 

  37. P. K. Choudhury, S. Ramaprabhu, K. P. Ramesh, and R. Menon, J. Phys.: Condens. Matter 23, 265303 (2011).

    Google Scholar 

  38. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, K. A. Menshikov, A. M. Lebedev, B. N. Kolbasov, Y. V. Zubavichus, D. Rajarathnam, J. Nucl. Mater. 376 (2), 152 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Svechnikov.

Additional information

The article was translated by the authors.

Original Russian Text © N.Yu. Svechnikov, V.G. Stankevich, B.N. Kolbasov, Y.V. Zubavichus, A.A. Veligzhanin, V.A. Somenkov, L.P. Sukhanov, A.M. Lebedev, K.A. Menshikov, 2017, published in Poverkhnost’, 2017, No. 12, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svechnikov, N.Y., Stankevich, V.G., Kolbasov, B.N. et al. Cluster-Type Structure of Amorphous Smooth Hydrocarbon CD x Films (x ~ 0.5) from T-10 Tokamak. J. Surf. Investig. 11, 1208–1215 (2017). https://doi.org/10.1134/S1027451017060349

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017060349

Keywords

Navigation