Skip to main content
Log in

Degradation of Toluene Hydrocarbon by Isolated Yeast Strains: Molecular Genetic Approaches for Identification and Characterization

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Removal of petroleum benzene, toluene, and xylene compounds from the environment is necessary to ensure quality life. In this research, 41 yeasts were isolated from oily soils. Among them, nine yeasts named KKUs (A5, A6, A12, A20, A23, A24, A26, A29, and A38) were selected based on their use of benzene, toluene, and xylene as a sole carbon and energy source. Based on their growth rates, all selected yeasts displayed a high efficiency for toluene degradation, but had no ability to degrade benzene and a low ability to degrade xylene, except A29 and A38, which could not degrade xylene. HPLC analysis for toluene removal indicated that A6, A12, A20, A23, A24, and A26 almost completely removed the toluene compound after 3 days of incubation (92.74, 94.61, 95.05, 91.74, 91.85, and 97.29%, respectively). In addition, strains A29 and A38 showed moderate degradation (88.29 and 85.30%, respectively), while the ability of A5 was low (39.00%). The isolates were identified based on amplifying and sequencing the D1/D2 domain of the 26S rRNA gene. Alignments and comparisons of the 26S rRNA gene sequences of the isolates with those available in GenBank, plus phylogenetic analysis, proved isolates as Rhodotorula lactose KKU-A5, Rhodotorula nymphaeae KKU-A6, Rhodotorula graminis KKU-A12, Rhodotorula minuta KKU-A20, Exophiala dermatitidis KKU-A23, Candida davisiana KKU-A24, Rhodotorula slooffiae KKU-A26, Rhodotorula mucilaginosa KKU-A29, and Rhodosporidium diobovatum KKU-A38. Random amplified polymorphic DNA-PCR fingerprinting was accomplished within seven toluene-degrading red yeasts (A5, A6, A12, A20, A26, A29, and A38). The results indicated no correlation between the random amplified polymorphic DNA profile and the geographic origin of the isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitra, S. and Roy, P., BTEX: a serious ground-water contaminant, Res. J. Environ. Sci., 2011, vol. 5, pp. 394–398.

    Article  CAS  Google Scholar 

  2. Singh, S., Kang, S.H., Mulchandani, A., and Chen, W., Bioremediation: environmental clean-up through pathway engineering. Curr. Opin. Biotechnol., 2008, vol.19, pp. 437–444.

    Google Scholar 

  3. Díaz, E., 2008. Microbial Biodegradation: Genomics and Molecular Biology, Horizon Scientific Press, 2008.

    Google Scholar 

  4. Dua, M., Singh A., Sethunathan N., and Johri A., Biotechnology and bioremediation: successes and limitations, Appl. Microbiol. Biotechnol., 2002, vol. 59, pp. 143–152.

    Article  PubMed  CAS  Google Scholar 

  5. Hesham, A., Khan, S., Liu, X., et al., Application of PCR–DGGE to analyze the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil, Yeast, 2006, vol. 23, pp. 879–887.

    Article  CAS  Google Scholar 

  6. Cappello, S., Caruso, G., Zampino, D., et al., Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study, J. Appl. Microbiol., 2007, vol. 102, pp. 184–194.

    Article  PubMed  CAS  Google Scholar 

  7. Hesham, A., Alrumman, A.S., and Jawaher, A., 16S rDNA phylogenetic and RAPD–PCR analysis of petroleum polycyclic aromatic hydrocarbons degrading bacteria enriched from oil-polluted soils, Arab. J. Sci. Eng., 2015, vol. 41, pp. 2095–2106.

    Article  CAS  Google Scholar 

  8. Hesham, A., Wang, Z., Zhang, Y., et al., Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons, Ann. Microbiol., 2006, vol. 56, pp. 109–112.

    Article  CAS  Google Scholar 

  9. Abari, A.H., Emtiazi, G., Ghasemi S.M., et al., Isolation and characterization of a novel toluene-degrading bacterium exhibiting potential application in bioremediation, J. Microbiol., 2013, vol. 6, pp. 256–261.

    Google Scholar 

  10. Farag, S. and Soliman, N.A., Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain, Braz. Arch. Biol. Technol., 2011, vol. 54, pp. 821–830.

    Article  CAS  Google Scholar 

  11. Hesham, A., New safety and rapid method for extraction of genomic DNA from bacteria and yeast strains suitable for PCR amplifications, J. Pure Appl. Microbiol., 2014, vol. 8, pp. 383–388.

    CAS  Google Scholar 

  12. Kurtzman, C. and Robnett, C., Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek, 1998, vol. 73, pp. 331–371.

    Article  PubMed  CAS  Google Scholar 

  13. Hesham, A., Khan, S., Tao, Y., et al., Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of meta-genomic methods for community structure analyses. Environ. Sci. Pollut. Res., 2012, vol. 19, pp. 3568–3578.

    Article  CAS  Google Scholar 

  14. Coates, J.D., Chakraborty, R., and Lack, J.G., Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas, Nature, 2001, vol. 411, pp. 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  15. Martorell, P., Fernández-Espinar, M.T., and Querol, A., Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources, Int. J. Food Microbiol., 2005, vol. 101, pp. 293–302.

    Article  PubMed  CAS  Google Scholar 

  16. Yeh, F.C. and Boyle, T.B., Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot., 1997, pp. 129–157.

    Google Scholar 

  17. Hunter, P.R and Gaston, M. A., Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity, J. Clin. Microbiol., 1988, vol. 26, pp. 2465–2466.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Larik, I., Qazi, M., Kanhar, A., et al., Biodegradation of petrochemical hydrocarbons using an efficient bacterial consortium: A2457, Arab. J. Sci. Eng., 2015, pp. 1–10.

    Google Scholar 

  19. Chaillan, F., Le Flèche, A., Bury, E., et al., Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms, Res. Microbiol., 2004, vol. 155, pp. 587–595.

    Article  PubMed  CAS  Google Scholar 

  20. Heider., J., Spormann, A.M., Beller, H.R., et al., Anaerobic bacterial metabolism of hydrocarbons, FEMS Microbiol. Rev., 1998, vol. 22, pp. 459–473.

    Article  CAS  Google Scholar 

  21. Hassanshahian, M., Tebyanian, H., and Cappello, S., Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf, Mar. Pollut. Bull., 2012, vol. 64, pp.1386–1391.

    Google Scholar 

  22. Leahy, J.G., Tracy, K.D., and Eley, M.H., Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria, FEMS Microbiol. Ecol., 2003, vol. 43, pp. 271–276.

    Article  PubMed  CAS  Google Scholar 

  23. Daniel, H.M. and Meyer, W., Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts, Int. J. Food Microbiol., 2003, vol. 86, pp. 61–78.

    Article  PubMed  CAS  Google Scholar 

  24. Frutos, R., Fernández-Espinar, M.T., and Querol, A., Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers, Antonie Van Leeuwenhoek, 2004, vol. 85, pp. 175–185.

    Article  Google Scholar 

  25. Kurtzman, C.P., Four new yeasts in the Pichia anomala clade, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 395–404.

    Article  PubMed  Google Scholar 

  26. Abliz, P., Fukushima, K., Takizawa, K., and Nishimura, K., Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis, FEMS Immunol. Med. Microbiol., 2004, vol. 40, pp. 41–49.

    Article  PubMed  CAS  Google Scholar 

  27. Bento, F.M., Camargo, F.A.O., Okeke, B.C., et al., Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation, Bioresour. Technol., 2005, vol. 96, pp. 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  28. Kumari, M. and Abraham, J., Biodegradation of diesel oil using yeast Rhodosporidium toruloides, Res. J. Environ. Toxicol., 2011, vol. 5, pp. 369–377.

    Article  CAS  Google Scholar 

  29. Molnár, E., Baude, A., Richmond, S.A., et al., Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain, Neuroscience, 1993, vol. 53, pp. 307–326.

    Article  PubMed  Google Scholar 

  30. Quesada, M. and Cenis, J., Use of random amplified polymorphic DNA (RAPD–PCR) in the characterization of wine yeasts, Am. J. Enol. Vitic., 1995, vol. 46, pp. 204–208.

    CAS  Google Scholar 

  31. Tofalo, R., Chaves-López, C., Di Fabio, F., et al., Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must, Int. J. Food Microbiol., 2009, vol. 130, pp. 179–187.

    Article  PubMed  CAS  Google Scholar 

  32. Meroth, B., Hammes, W.P., and Hertel, C., Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis, Appl. Environ. Microbiol., 2003, vol. 69, pp. 7453–7461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. EL-Fiky, Z.A., Hassan, G.M., and Emam, A.M., Quality parameters and RAPD–PCR differentiation of commercial baker’s yeast and hybrid strains, J. Food Sci., 2012, vol. 77, pp. 312–317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El-L. Hesham.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesham, A.EL., Alrumman, S.A. & ALQahtani, A.D.S. Degradation of Toluene Hydrocarbon by Isolated Yeast Strains: Molecular Genetic Approaches for Identification and Characterization. Russ J Genet 54, 933–943 (2018). https://doi.org/10.1134/S1022795418080070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418080070

Keywords

Navigation