Skip to main content
Log in

Poly(ethylene terephthalate)–Clay Nanocomposite Multifilament Yarn: Physical and Thermal Properties

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Poly(ethylene terephthalate)/clay nanocomposite multifilament yarn was manufactured by conventional masterbatch approach. Poly(butylene terephthalate) was used as a carrier polymer in masterbatch steps. The masterbatches were diluted into pilot melt spinning machine and subsequently drawn with 2.65 ratios to prepare fully oriented yarn. The degree of dispersion in nanocomposite fibers was analyzed by X-ray diffractometry and scanning electron microscopy. Even though the addition of nanoclay reduced mechanical properties of nanocomposite fibers, dimensional stability could be improved at certain clay contents. The flammability properties were sufficiently improved, and no significant changes were observed with increasing clay content. The main novelty of this paper is the development of a proper approach for the selection of optimum carrier polymer for nanoclay in masterbatch preparation, as well as proper nanoclay for desired polymers. The acid-base approach is used in evaluating the surface free energy of commercial nanoclay and calculation the total interaction energies between polymer and clay surfaces. Such an approach gives adequate information about polymer-clay compatibility and provides a useful tool in the selection of optimum carrier polymer, as well as proper nanoclay for the desired polymer during masterbatch preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. A. Utracki, Clay-Containing Polymeric Nanocomposites (Rapra Technol. Ltd., Shawbury; Shrewsbury; Shropshire, 2004).

  2. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer 42, 9929 (2001).

    CAS  Google Scholar 

  3. Y. Ke, C. Long, and Z. Qi, J. Appl. Polym. Sci. 71, 1139 (1999).

    CAS  Google Scholar 

  4. S. Hamzehlou and A. A. Katbab, J. Appl. Polym. Sci. 106, 1375 (2007).

    CAS  Google Scholar 

  5. G.-H. Guan, C.-C. Li, and D. Zhang, J. Appl. Polym. Sci. 95, 1443 (2005).

    CAS  Google Scholar 

  6. J.-H. Chang, S. J. Kim, Y. L. Joo, and S. Im, Polymer 45, 919 (2004).

    CAS  Google Scholar 

  7. A. Esfandiar, H. Nazokdast, A.-S. Rashidi, and M.‑E. Yazdanshenas, J. Appl. Sci. 8, 545 (2008).

    Google Scholar 

  8. D. W. Litchfield, D. G. Baird, P. B. Rim, and C. Chen, Polym. Eng. Sci. 50, 2205 (2010).

    CAS  Google Scholar 

  9. D. W. Litchfield and D. G. Baird, Polymer 49, 5027 (2008).

    CAS  Google Scholar 

  10. G. J. Sevenich and D. T. Williamson, US Patent No. 207/0173585 A1 (2007).

  11. D. Turan, H. Sirin, S. Gurdag, and G. Ozkoc, Polym. Eng. Sci. 34, 887 (2013).

    CAS  Google Scholar 

  12. C. Wan, F. Zhao, X. Bao, B. Kandasubramanian, and M. Duggan, J. Phys. Chem. B 118, 11915 (2008).

    Google Scholar 

  13. P. Etelaaho, K. Nevalainen, R. Suihkonen, J. Vuorinen, K. Hanhi, and P. Jarvela, Polym. Eng. Sci. 49, 1438 (2009).

    Google Scholar 

  14. A. A. Mousa, Y. A. Youssef, W. S. Mohamed, R. Farouk, E. Giebel, and M. R. Buchmeiser, Color. Technol. 134, 126 (2018).

    CAS  Google Scholar 

  15. M. D. Teli and R. D. Kale, Polym. Eng. Sci. 52, 1148 (2012).

    CAS  Google Scholar 

  16. I. Özen and S. Gunes, Polym. Eng. Sci. 53, 1031 (2013).

    Google Scholar 

  17. I. Özen, Color. Technol. 131, 464 (2015).

    Google Scholar 

  18. J. Alongi, A. Frache, and E. Gioffredi, Fire Mater. 35, 383 (2011).

    CAS  Google Scholar 

  19. K. Gurudatt, P. De, A. K. Rakshit, and M. K. Bardhan, J. Ind. Text. 34, 167 (2005).

    CAS  Google Scholar 

  20. P. M. Costanzo, W. Wu, R. F. Giese, and C. J. van Oss, Langmuir 11, 1827 (1995).

    CAS  Google Scholar 

  21. S. Bourbigot, Advances in Fire Retardant Materials, Ed. by A. R. Horrocks and D. Price (Woodhead Publ., Cambridge, 2008), pp. 9-40.

    Google Scholar 

  22. A. R. Horrocks and D. Price, Fire Retardant Materials (Woodhead Publ., Cambridge, 2001).

    Google Scholar 

  23. R. Hojiyev, Y. Ulcay, M. S. Çelik, and W. M. Carty, Appl. Clay Sci. 141, 204 (2017).

    CAS  Google Scholar 

  24. R. Hojiyev, Y. Ulcay, M. Hojamberdiev, M. S. Çelik, and W. M. Carty, J. Colloid Interface Sci. 497, 393 (2017).

    CAS  PubMed  Google Scholar 

  25. R. Hojiyev, Y. Ulcay, and M. S. Çelik, Appl. Clay Sci. 146, 548 (2017).

    CAS  Google Scholar 

  26. C. J. Van Oss and R. F. Giese, Clays Clay Miner. 43, 474 (1995).

    CAS  Google Scholar 

  27. C. J. Van Oss and R. F. Giese, J. Dispersion Sci. Technol. 24, 363 (2003).

    CAS  Google Scholar 

  28. M. Parvinzadeh, S. Moradian, A. Rashidi, and M.‑E. Yazdanshenas, Polym.-Plast. Technol. Eng. 49, 874 (2010).

    CAS  Google Scholar 

  29. G. Normand, A. Mija, S. Pagnotta, E. Peuvrel-Disdier, and B. Vergnes, J. Appl. Polym. Sci. 134, 45053 (2017).

    Google Scholar 

  30. Surface Free Energy Components by Polar/Dispersion and Acid–Base Analyses; and Hansen Solubility Parameters for Various Polymers. http://www.accudynetest.com/polytable_02.html. Cited 2020.

  31. C. J. Van Oss, Interfacial Forces in Aqueous Media, 2nd ed. (CRC Press, Boca Raton, 2006).

    Google Scholar 

  32. W. Wu, R. F. Giese, and C. J. van Oss, Langmuir. 11, 379 (1995).

    CAS  Google Scholar 

  33. M. R. Kamal, J. U. Calderon, and R. B. Lennox, J. Adhes. Sci. Technol. 23, 663 (2009).

    Google Scholar 

  34. C. A. Fuentes, M. van Hellemont, L. Q. N. Tran, C. Dupont-Gillain, I. Van Vuure, and A. W. Verpoest, in Proceedings of 18th International Conference on Composite Materials, Edinburg, UK, 2009 (Edinburg, 2009).

  35. A. Sanchez-Solis, I. Romero-Ibara, M.R. Estrada, F. Calderas, and O. Manero, Polym. Eng. Sci. 44, 1094 (2004).

    CAS  Google Scholar 

  36. X. Xu, Y. Ding, Z. Qian, F. Wang, B. Wen, H. Zhou, S. Zhang, and M. Yang, Polym. Degrad. Stab. 94, 113 (2009).

    CAS  Google Scholar 

  37. T. U. Patro, V. Khakhar, and A. Misra, J. Appl. Polym. Sci. 113, 1720 (2009).

    CAS  Google Scholar 

  38. R. K. Shah and D. R. Paul, Polymer. 47, 4075 (2009).

    Google Scholar 

  39. I. Özen, F. İnceoğlu, K. Acatay, and Y. Z. Menceloğlu, Polym. Eng. Sci. 52, 1537 (2012).

    Google Scholar 

  40. A. L. F. de M. Giraldi, M. T. M. Bizarria, A. A. Silva, J. I. Velasco, M. A. D’Avila, and L. H. I. Mei, J. Appl. Polym. Sci. 108, 2252 (2008).

  41. M. Pluta, A. Caleski., M. Alexandre, M.-A. Paul, and P. Dubois, J. Appl. Polym. Sci. 86, 1497 (2002).

    CAS  Google Scholar 

  42. U. Gurmendi, J. I. Eguiazabal, and J. Nazabal, Eur. Polym. J. 44, 1686 (2008).

    CAS  Google Scholar 

  43. H. Ghasemi, P. J. Carreau, M. R. Kamal, and N. C. Chapleau, Int. Polym. Process. 26, 219 (2011).

    CAS  Google Scholar 

  44. D. W. Litchfield, PhD Thesis (Virginia Polytechnis Inst. State Univ., Blackbur, 2008).

  45. A. Bigdeli, H. Nazokdast, A. Rashidi, and M. E. Yazdanshenas, J. Text. Inst. 107, 774 (2015).

    Google Scholar 

  46. E. Giza, H. Ito, T. Kikutani, and N. Okui, J. Macromol. Sci., Part B: Phys. 39, 545 (2000).

    Google Scholar 

  47. S. Solarski, M. Ferreira, E. Devaux, G. Fontaine, P. Bachelet, S. Bourbigot, R. Delobel, P. Coszach, M. Murariu, A. Da Silva Ferreira, and M. Alexandre, J. Appl. Polym. Sci. 109, 841 (2008).

    CAS  Google Scholar 

  48. W. Xiao, H. Yu, K. Han, and M. Yu, J. Appl. Polym. Sci. 96, 2247 (2005).

    CAS  Google Scholar 

  49. M. C. Costache, M. J. Heidecker, E. Manias, and C. A. Wilkie, Polym. Adv. Technol. 17, 764 (2006).

    CAS  Google Scholar 

  50. K. Stoeffler, P. G. Lafleur, and J. Denault, Polym. Degrad. Stab. 93, 1332 (2008).

    CAS  Google Scholar 

  51. M. Bizarria, A. L. D. M. Giraldi, C. M. de Carvalho, J. I. Velasco, M. A. D’Avila, and L. H. Mei, J. Appl. Polym. Sci. 104, 1839 (2007).

    CAS  Google Scholar 

  52. B. Mu, Q. Wang, T. Qang, H. Wang, L. Jian, and X. Pei, Polym. Compos. 30, 619 (2009).

    CAS  Google Scholar 

  53. X.-G. Ge, D.-Y. Wang, C. Wang, M.-H. Qu, J.‑S. Wang, C.-S. Zhao, X.-K. Jing, and Y.-Z. Wang, Eur. Polym. J. 43, 2882 (2007).

    CAS  Google Scholar 

  54. J. Alongi, Fibers Polym. 12, 166 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the Koreteks Mensucat San. Tic. A.Ş. (Bursa, Türkiye) for their supports for performing masterbatch preparation and melt spinning experiments in their plant, and as well as for their help in measuring the physical properties of yarn and IV value measurements of masterbatch and yarn in their laboratories.

Funding

We acknowledge financial support from the Turkish Ministry of Science, Industry, and Technology and Korteks Mensucat Tic. San. A.Ş. (Bursa, Türkiye) through the San-Tez Projects (Industrial Ph.D. Projects) (Project number: 00492.STZ.2009-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustam Hojiyev.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustam Hojiyev, Ulcay, Y. & Çelik, M.S. Poly(ethylene terephthalate)–Clay Nanocomposite Multifilament Yarn: Physical and Thermal Properties. Polym. Sci. Ser. A 62, 392–406 (2020). https://doi.org/10.1134/S0965545X20040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20040070

Navigation