Skip to main content
Log in

Investigations on stabilities and intermolecular interactions of different naphthalene derivatives dimers by using B3LYP and M06-2X density functional calculations

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, the stabilities and hydrogen bond interactions of 4-chloro-1-naphthol, 1-hydrox-ynaphthalene and 1,4-dihydroxynaphthalene dimers have been theoretically investigated by means of study on binding energies with nonlocal hybrid three-parameter Lee-Yang-Parr, B3LYP, and M06-class functional calculations. Calculations on dimers aim to provide as a test of the efficacy of M06 calculations for intermolecular interaction calculations and more strongly bound systems. For hydroxyl- and halo-substituted derivatives of naphthalene, total electronic energies, their correction for the zero point vibrational energies with some calculated thermodynamic properties and their relative differences are together in order to discuss the rotamer structures. Static (hyper) polarizabilities and the electric dipole moments, frontier molecular orbital energy gaps and the relationships between them have been interpreted. Generally, they are seen that the calculated geometric parameters and spectral results were in a good agreement with the corresponding experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. E. Amoore and E. Hautala, J. Appl. Toxicol. 3, 272 (1983).

    Article  CAS  Google Scholar 

  2. J. P. Daw Son, W. W. Thayer and J. F. Desfoges, Blood 13, 1113 (1987).

    Google Scholar 

  3. S. J. Fanbergh, Arch. Derm. Syph. 43, 53 (1940).

    Article  Google Scholar 

  4. M. Talukder and C. R. Kates, Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 1999–2014).

    Google Scholar 

  5. V. V. Mezheritskii, M. S. Korobov, O. M. Golyanskaya, N. I. Omelichkin, L. G. Minyaeva, G. S. Borodkin, A. A. Milov, A. V. Tsukanov, and A. D. Dubonosov, Russ. J. Org. Chem. 48, 241 (2012).

    Article  CAS  Google Scholar 

  6. M. I. Rodriguez-Caceres, R. A. Agbaria, and I. M. Warner, J. Fluoresc. 15, 185 (2005).

    Article  CAS  Google Scholar 

  7. P. D. Ahn, R. Bishop, D. C. Craig, and M. L. Scudder, J. Inclus. Phenom. Mol. Rec. Chem. 20, 267 (1994).

    Article  CAS  Google Scholar 

  8. P. D. Ahn, R. Bishop, D. C. Craig, and M. L. Scudder, J. Inclus. Phenom. Mol. Rec. Chem. 23, 313 (1995).

    Article  CAS  Google Scholar 

  9. Y. B. Rokade and R. Z. Sayyed, Rasayan J. Chem. 2, 972 (2009).

    CAS  Google Scholar 

  10. A. Behal and B. Bahal, A Textbook of Organic Chemistry (S. Chand and Company, New Delhi, 2005).

    Google Scholar 

  11. B. P. Patel, E. J. Pressman, and R. Mills, Int. Patent WO/2005/040080 (2005).

  12. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  13. J. Sponer, J. Leszczynski, and P. Hobza, J. Phys. Chem. 100, 1965 (1996).

    Article  CAS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 78 (1988).

    Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  16. D. C. Young, Computional Chemistry: A Pratical Guide for Applying Techniques to Real-World Problems (Wiley, New York, 2001).

    Book  Google Scholar 

  17. M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4 (Warsaw, 2004).

    Google Scholar 

  18. A. Frisch, A. B. Nielsen, and A. J. Holder, Gauss View User Manual (Gaussian Inc., Pittsburgh, 2001).

    Google Scholar 

  19. R. Ditchfield, Mol. Phys. 27, 789 (1974).

    Article  CAS  Google Scholar 

  20. C. M. Rohlfing, L. C. Allen, and R. Ditchfield, Chem. Phys. 87, 9 (1984).

    Article  CAS  Google Scholar 

  21. S. Miertus, E. Scrocco, and J. Tomasi, J. Chem. Phys. 55, 1171 (1981).

    Google Scholar 

  22. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford CT, 2013).

    Google Scholar 

  24. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  25. R. Zhang, B. Du, G. Sun, and Y. Sun, Spectrochim. Acta, Part A 75, 1115 (2010).

    Article  Google Scholar 

  26. A. K. Jissy, U. P. M. Ashik, and A. Datta, J. Phys. Chem. C 115, 12530 (2011).

    Article  CAS  Google Scholar 

  27. E. Benassi and F. Spagnolo, J. Solution Chem. 39, 11 (2010).

    Article  CAS  Google Scholar 

  28. P. S. Liyanage, R. M. de Silva, and K. M. N. de Silva, J. Mol. Struct.: THEOCHEM 639, 195 (2003).

    Article  CAS  Google Scholar 

  29. M. C. R. Delgado, V. Hernandez, J. Casado, J. T. Lopez Navarre, J. M. Raimundo, P. Blanchard, and J. Roncali, J. Mol. Struct. 651, 151 (2003).

    Article  Google Scholar 

  30. J. P. Abraham, D. Sajan, V. Shettigar, S. M. Dharmaprakash, I. Nemec, I. H. Joe, and V. S. Jayakumar, J. Mol. Struct. 917, 27 (2009).

    Article  CAS  Google Scholar 

  31. M. Karabacak, M. Cinar, M. Kurt, A. Poiyamozhi, and N. Sundaraganesane, Spectrochim. Acta, Part A 117, 234 (2014).

    Article  CAS  Google Scholar 

  32. E. R. Sokolowska and B. Marciniak, Acta Crystallogr. C 65, 207 (2009).

    Article  Google Scholar 

  33. Sigma-Aldrich Electronic Web Page (Sigma Co., Aldrich, New York, 2006), http://www.sigmaaldrich.com/spectra/ftir/FTIR007548.PDF (Accessed March 2013); http://www.sigmaaldrich.com/spectra/rair/RAIR012403.PDF (Accessed March 2013).

  34. B. Lu, L. Zeng, J. Xu, Z. Le, and H. Rao, Eur. Polym. J. 45, 2279 (2009).

    Article  CAS  Google Scholar 

  35. Spectral Database for Organic Compounds (National Institute of Advanced Industrial Science and Technology, Japan, 2011). http://sdbs.db.aist.go.jp (Accessed March 2013).

  36. F. L. Gervasio, R. Chelli, P. Procacci, and V. Schettino, Proteins 48, 117 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karakaya.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakaya, M., Çiçek, A., Ucun, F. et al. Investigations on stabilities and intermolecular interactions of different naphthalene derivatives dimers by using B3LYP and M06-2X density functional calculations. Russ. J. Phys. Chem. 88, 2137–2145 (2014). https://doi.org/10.1134/S0036024414120127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414120127

Keywords

Navigation